Minimum-rank matrices with prescribed graph

被引:50
|
作者
Nylen, PM
机构
[1] Department of Mathematics, Auburn University, Auburn
关键词
D O I
10.1016/0024-3795(95)00238-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study properties of real symmetric matrices with prescribed graph and lowest possible rank. We concentrate on the case where the graph is a tree and give an algorithm for computing the minimum possible rank in this case. A more general problem is also considered.
引用
收藏
页码:303 / 316
页数:14
相关论文
共 50 条
  • [21] On generalized Hadamard matrices of minimum rank
    Tonchev, VD
    FINITE FIELDS AND THEIR APPLICATIONS, 2004, 10 (04) : 522 - 529
  • [22] An upper bound for the minimum rank of a graph
    Berman, Avi
    Friedland, Shmuel
    Hogben, Leslie
    Rothblum, Uriel G.
    Shader, Bryan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 429 (07) : 1629 - 1638
  • [23] On the graph complement conjecture for minimum rank
    Barioli, Francesco
    Barrett, Wayne
    Fallat, Shaun M.
    Hall, H. Tracy
    Hogben, Leslie
    van der Holst, Hein
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (12) : 4373 - 4391
  • [24] On the minimum semidefinite rank of a simple graph
    Booth, Matthew
    Hackney, Philip
    Harris, Benjamin
    Johnson, Charles R.
    Lay, Margaret
    Lenker, Terry D.
    Mitchell, Lon H.
    Narayan, Sivaram K.
    Pascoe, Amanda
    Sutton, Brian D.
    LINEAR & MULTILINEAR ALGEBRA, 2011, 59 (05): : 483 - 506
  • [25] Minimum-Rank Dynamic Output Consensus Design for Heterogeneous Nonlinear Multi-Agent Systems
    Dinh Hoa Nguyen
    IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2018, 5 (01): : 105 - 115
  • [26] DIAGONAL ENTRY RESTRICTIONS IN MINIMUM RANK MATRICES
    Barrett, Wayne
    Malloy, Nicole
    Nelson, Curtis
    Sexton, William
    Sinkovic, John
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2013, 26 : 300 - 332
  • [27] On the graph complement conjecture for minimum semidefinite rank
    Mitchell, Lon H.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (06) : 1311 - 1314
  • [28] The rank of connection matrices and the dimension of graph algebras
    Lovász, L
    EUROPEAN JOURNAL OF COMBINATORICS, 2006, 27 (06) : 962 - 970
  • [29] Techniques for determining the minimum rank of a small graph
    DeLoss, Laura
    Grout, Jason
    Hogben, Leslie
    McKay, Tracy
    Smith, Jason
    Tims, Geoff
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (11) : 2995 - 3001
  • [30] On the minimum rank of a graph over finite fields
    Friedland, Shmuel
    Loewy, Raphael
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (06) : 1710 - 1720