Temperley-Lieb algebras and the four-color theorem

被引:1
|
作者
Kauffman, L [1 ]
Thomas, R
机构
[1] Univ Illinois, Dept Math Stat & Comp Sci, Chicago, IL 60680 USA
[2] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
关键词
D O I
10.1007/s00493-003-0039-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Temperley-Lieb algebra T-n with parameter 2 is the associative algebra over Q generated by 1, e(0), e(1),...,e(n), where the generators satisfy the relations e(i)(2) = 2e(i), e(i)e(j)e(i) = e(i) if \i - j\ = 1 and e(i)e(j) = e(j)e(i) if \i -j\ greater than or equal to 2. We use the Four Color Theorem to give a necessary and sufficient condition for certain elements of T-n to be nonzero. It turns out that the characterization is, in fact, equivalent to the Four Color Theorem.
引用
收藏
页码:653 / 667
页数:15
相关论文
共 50 条
  • [41] Graded cellular bases for Temperley-Lieb algebras of type A and B
    Plaza, David
    Ryom-Hansen, Steen
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2014, 40 (01) : 137 - 177
  • [42] Semi-simplicity of Temperley-Lieb Algebras of type D
    Yanbo Li
    Xiaolin Shi
    Algebras and Representation Theory, 2022, 25 : 1133 - 1158
  • [43] Temperley-Lieb stochastic processes
    Pearce, PA
    Rittenberg, V
    de Gier, J
    Nienhuis, B
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (45): : L661 - L668
  • [44] Entanglement and the Temperley-Lieb category
    Brannan, Michael
    Collins, Benoit
    TOPOLOGICAL PHASES OF MATTER AND QUANTUM COMPUTATION, 2020, 747 : 27 - 50
  • [45] Temperley-Lieb and non-crossing partition planar algebras
    Kodiyalam, Vijay
    Sunder, V. S.
    NONCOMMUTATIVE RINGS, GROUP RINGS, DIAGRAM ALGEBRAS AND THEIR APPLICATIONS, 2008, 456 : 61 - 72
  • [46] SPIN-S QUANTUM CHAINS AND TEMPERLEY-LIEB ALGEBRAS
    BATCHELOR, MT
    BARBER, MN
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (01): : L15 - L21
  • [47] Image of the braid groups inside the finite Temperley-Lieb algebras
    Brunat, Olivier
    Marin, Ivan
    MATHEMATISCHE ZEITSCHRIFT, 2014, 277 (3-4) : 651 - 664
  • [48] Temperley-Lieb Quantum Channels
    Brannan, Michael
    Collins, Benoit
    Lee, Hun Hee
    Youn, Sang-Gyun
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 376 (02) : 795 - 839
  • [49] CALCULATIONS WITH THE TEMPERLEY-LIEB ALGEBRA
    LICKORISH, WBR
    COMMENTARII MATHEMATICI HELVETICI, 1992, 67 (04) : 571 - 591
  • [50] Framization of the Temperley-Lieb algebra
    Goundaroulis, Dimos
    Juyumaya, Jesus
    Kontogeorgis, Aristides
    Lambropoulou, Sofia
    MATHEMATICAL RESEARCH LETTERS, 2017, 24 (02) : 299 - 345