Temperley-Lieb algebras and the four-color theorem

被引:1
|
作者
Kauffman, L [1 ]
Thomas, R
机构
[1] Univ Illinois, Dept Math Stat & Comp Sci, Chicago, IL 60680 USA
[2] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
关键词
D O I
10.1007/s00493-003-0039-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Temperley-Lieb algebra T-n with parameter 2 is the associative algebra over Q generated by 1, e(0), e(1),...,e(n), where the generators satisfy the relations e(i)(2) = 2e(i), e(i)e(j)e(i) = e(i) if \i - j\ = 1 and e(i)e(j) = e(j)e(i) if \i -j\ greater than or equal to 2. We use the Four Color Theorem to give a necessary and sufficient condition for certain elements of T-n to be nonzero. It turns out that the characterization is, in fact, equivalent to the Four Color Theorem.
引用
收藏
页码:653 / 667
页数:15
相关论文
共 50 条