Temperley-Lieb algebras and the four-color theorem

被引:1
|
作者
Kauffman, L [1 ]
Thomas, R
机构
[1] Univ Illinois, Dept Math Stat & Comp Sci, Chicago, IL 60680 USA
[2] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
关键词
D O I
10.1007/s00493-003-0039-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Temperley-Lieb algebra T-n with parameter 2 is the associative algebra over Q generated by 1, e(0), e(1),...,e(n), where the generators satisfy the relations e(i)(2) = 2e(i), e(i)e(j)e(i) = e(i) if \i - j\ = 1 and e(i)e(j) = e(j)e(i) if \i -j\ greater than or equal to 2. We use the Four Color Theorem to give a necessary and sufficient condition for certain elements of T-n to be nonzero. It turns out that the characterization is, in fact, equivalent to the Four Color Theorem.
引用
收藏
页码:653 / 667
页数:15
相关论文
共 50 条
  • [1] Temperely-Lieb Algebras and the Four-Color Theorem
    Louis Kauffman*
    Robin Thomas†
    Combinatorica, 2003, 23 : 653 - 667
  • [2] The homology of the Temperley-Lieb algebras
    Boyd, Rachael
    Hepworth, Richard
    GEOMETRY & TOPOLOGY, 2024, 28 (03) : 1437 - 1499
  • [3] PRESENTATIONS FOR TEMPERLEY-LIEB ALGEBRAS
    East, James
    QUARTERLY JOURNAL OF MATHEMATICS, 2021, 72 (04): : 1253 - 1269
  • [4] Monomials and Temperley-Lieb algebras
    Fan, CK
    Green, RM
    JOURNAL OF ALGEBRA, 1997, 190 (02) : 498 - 517
  • [5] On the affine Temperley-Lieb algebras
    Fan, CK
    Green, RM
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1999, 60 : 366 - 380
  • [6] Affine Temperley-Lieb algebras
    Gnerre, S
    JOURNAL OF OPERATOR THEORY, 2000, 43 (01) : 35 - 42
  • [7] REPRESENTATIONS OF GRAPH TEMPERLEY-LIEB ALGEBRAS
    MARTIN, PP
    PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1990, 26 (03) : 485 - 503
  • [8] Standard Monomials for Temperley-Lieb Algebras
    Kim, SungSoon
    Lee, Dong-il
    ACM COMMUNICATIONS IN COMPUTER ALGEBRA, 2016, 50 (04): : 179 - 181
  • [9] On the semisimplicity of cyclotomic temperley-Lieb algebras
    Rui, HB
    Xi, CC
    Yu, WH
    MICHIGAN MATHEMATICAL JOURNAL, 2005, 53 (01) : 83 - 96
  • [10] Dual bases in Temperley-Lieb algebras
    Brannan, Michael
    Collins, Benoit
    OPERATOR ALGEBRAS AND MATHEMATICAL PHYSICS, 2019, 80 : 43 - 52