INTEGRABILITY AND BIFURCATIONS OF LIMIT CYCLES IN A CUBIC KOLMOGOROV SYSTEM

被引:6
|
作者
Feng, Li [1 ]
机构
[1] Linyi Univ, Sch Sci, Linyi, Shandong, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2013年 / 23卷 / 04期
关键词
Kolmogorov systems; center-focus problem; Lyapunov constant; limit circle;
D O I
10.1142/S0218127413500612
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the planar cubic Kolmogorov systems with three invariant algebraic curves which have a equilibrium at (1, 1). With the help of computer algebra system MATHEMATICA, we prove that five limit cycles can be bifurcated from a critical point in the first quadrant. Moreover, the necessary conditions of center are obtained, by technical transformation, and its sufficiencies are proved.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Analytical integrability problem for perturbations of cubic Kolmogorov systems
    Algaba, Antonio
    Garcia, Cristobal
    Reyes, Manuel
    CHAOS SOLITONS & FRACTALS, 2018, 113 : 1 - 10
  • [42] Bifurcations of limit cycles in a quintic Lyapunov system with eleven parameters
    Feng, Li
    CHAOS SOLITONS & FRACTALS, 2012, 45 (11) : 1417 - 1422
  • [43] Center Conditions and Bifurcations of Limit Cycles in a Quartic Lyapunov System
    Zhang, Dexue
    PRACTICAL APPLICATIONS OF INTELLIGENT SYSTEMS, 2011, 124 : 287 - 292
  • [44] Global bifurcations of limit and separatrix cycles in a generalized Lienard system
    Gaiko, VA
    van Horssen, WT
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 59 (1-2) : 189 - 198
  • [45] Limit cycles in a general Kolmogorov model
    Huang, XC
    Zhu, LM
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 60 (08) : 1393 - 1414
  • [46] Limit cycles for a cubic Hamiltonian system with lower perturbations
    Liu, Zheng-Rong
    Li, Shao-Yong
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON NONLINEAR MECHANICS, 2007, : 1526 - 1529
  • [47] Centers and Limit Cycles of a Generalized Cubic Riccati System
    Zhou, Zhengxin
    Romanovski, Valery G.
    Yu, Jiang
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (02):
  • [48] A cubic polynomial system with seven limit cycles at infinity
    Zhang, Qi
    Liu, Yirong
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 177 (01) : 319 - 329
  • [49] EXISTENCE CONDITIONS OF THIRTEEN LIMIT CYCLES IN A CUBIC SYSTEM
    Yang, Junmin
    Han, Maoan
    Li, Jibin
    Yu, Pei
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (08): : 2569 - 2577
  • [50] A cubic system with twelve small amplitude limit cycles
    Liu, YR
    Huang, WT
    BULLETIN DES SCIENCES MATHEMATIQUES, 2005, 129 (02): : 83 - 98