Numerical Study Using Explicit Multistep Galerkin Finite Element Method for the MRLW Equation

被引:8
|
作者
Mei, Liquan [1 ]
Gao, Yali [1 ]
Chen, Zhangxin [2 ]
机构
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Dept Computat Sci, Xian 710049, Peoples R China
[2] Univ Calgary, Schulich Sch Engn, Dept Chem & Petr Engn, Calgary, AB T2N 1N4, Canada
关键词
explicit multistep method; finite elements; Galerkin method; modified regularized long wave equation; QUADRATIC B-SPLINE; RLW EQUATION; DIFFERENCE SCHEME; COLLOCATION METHOD; SOLITARY WAVES; LONG; SIMULATION;
D O I
10.1002/num.21971
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, an explicit multistep Galerkin finite element method for the modified regularized long wave equation is studied. The discretization of this equation in space is by linear finite elements, and the time discretization is based on explicit multistep schemes. Stability analysis and error estimates of our numerical scheme are derived. Numerical experiments indicate the validation of the scheme by L2- and L8-error norms and three invariants of motion.4 (C) 2015 Wiley Periodicals, Inc.
引用
收藏
页码:1875 / 1889
页数:15
相关论文
共 50 条
  • [21] A NUMERICAL ANALYSING OF THE GEW EQUATION USING FINITE ELEMENT METHOD
    Karakoc, Seydi Battal Gazi
    [J]. JOURNAL OF SCIENCE AND ARTS, 2019, (02): : 339 - 348
  • [22] Explicit Numerical Manifold Characteristic Galerkin Method for Solving Burgers' Equation
    Sun, Yue
    Chen, Qian
    Chen, Tao
    Yong, Longquan
    [J]. AXIOMS, 2024, 13 (06)
  • [23] Weak Galerkin finite element method for the nonlinear Schrodinger equation
    Aziz, Dalai Ismael
    Hussein, Ahmed J.
    [J]. INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (02): : 2453 - 2468
  • [24] A HYBRIDIZED WEAK GALERKIN FINITE ELEMENT METHOD FOR THE BIHARMONIC EQUATION
    Wang, Chunmei
    Wang, Junping
    [J]. INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2015, 12 (02) : 302 - 317
  • [25] A Weak Galerkin Harmonic Finite Element Method for Laplace Equation
    Al-Taweel, Ahmed
    Dong, Yinlin
    Hussain, Saqib
    Wang, Xiaoshen
    [J]. COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2021, 3 (03) : 527 - 543
  • [26] Galerkin finite element method for the Rosenau-RLW equation
    Atouani, Noureddine
    Omrani, Khaled
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 66 (03) : 289 - 303
  • [27] Weak Galerkin mixed finite element method for heat equation
    Zhou, Chenguang
    Zou, Yongkui
    Chai, Shimin
    Zhang, Qian
    Zhu, Hongze
    [J]. APPLIED NUMERICAL MATHEMATICS, 2018, 123 : 180 - 199
  • [28] Mixed Discontinuous Galerkin Finite Element Method for the Biharmonic Equation
    Thirupathi Gudi
    Neela Nataraj
    Amiya K. Pani
    [J]. Journal of Scientific Computing, 2008, 37 : 139 - 161
  • [29] The discontinuous Galerkin finite element method for fractional cable equation
    Zheng, Yunying
    Zhao, Zhengang
    [J]. APPLIED NUMERICAL MATHEMATICS, 2017, 115 : 32 - 41
  • [30] A HYBRIDIZED WEAK GALERKIN FINITE ELEMENT METHOD FOR THE BIHARMONIC EQUATION
    Wang, Chunmei
    Wang, Junping
    [J]. INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2016, 13 (02) : 302 - +