Bio-inspired superoleophobic and smart materials: Design, fabrication, and application

被引:481
|
作者
Liu, Kesong [1 ]
Tian, Ye [2 ]
Jiang, Lei [1 ,2 ]
机构
[1] Beihang Univ, Sch Chem & Environm, Key Lab Bioinspired Smart Interfacial Sci & Techn, Minist Educ, Beijing 100191, Peoples R China
[2] Chinese Acad Sci, Inst Chem, Key Lab Organ Solids, BNLMS, Beijing 100190, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
OIL-REPELLENT SURFACES; CONTACT-ANGLE HYSTERESIS; SELF-CLEANING SURFACES; GEL POLYMER HYBRIDS; POLYHEDRAL OLIGOMERIC SILSESQUIOXANES; SUPER-HYDROPHOBIC SURFACES; WENZEL WETTING TRANSITION; CHEMICAL-VAPOR-DEPOSITION; CARBON NANOTUBE FILMS; WATER STRIDER LEGS;
D O I
10.1016/j.pmatsci.2012.11.001
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Through evolution, nature has arrived at what is optimal. Inspired by the biomaterials with special wettability, superhydrophobic materials have been well-investigated and -covered by several excellent reviews. The construction of superoleophobicity is more difficult than that of superhydrophobicity because the surface tension of oil or other organic liquids is lower than that of water. However, superoleophobic surfaces have drawn a great deal of attention for both fundamental research and practical applications in a variety of fields. In this contribution, we focus on recent research progress in the design, fabrication, and application of bio-inspired superoleophobic and smart surfaces, including superoleophobic-superhydrophobic surfaces, oleophobic-hydrophilic surfaces, underwater superoleophobic surfaces, and smart surfaces. Although the research of bio-inspired superoleophobicity is in its infancy, it is a rapidly growing and enormously promising field. The remaining challenges and future outlook of this field are also addressed. Multifunctional integration is a inherent characteristic for biological materials. Learning from nature has long been a source of bio-inspiration for scientists and engineers. Therefore, further cross-disciplinary cooperation is essential for the construction of multifunctional advanced superoleophobic surfaces through learning the optimized biological solutions from nature. We hope this review will provide some inspirations to the researchers in the field of material science, chemistry, physics, biology, and engineering. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:503 / 564
页数:62
相关论文
共 50 条
  • [41] Bio-inspired study of structural materials
    Zhou, BL
    [J]. MATERIALS SCIENCE & ENGINEERING C-BIOMIMETIC AND SUPRAMOLECULAR SYSTEMS, 2000, 11 (01): : 13 - 18
  • [42] Bio-inspired materials - Unnatural life
    Dragnea, Bogdan
    [J]. NATURE MATERIALS, 2008, 7 (02) : 102 - 104
  • [43] Bio-inspired materials for electrochemical devices
    Pawlicka, A.
    Firmino, A.
    Sentanin, F.
    Sabadini, R. C.
    Jimenez, D. E. Q.
    Jayme, C. C.
    Mindroiu, M.
    Zgarian, R. G.
    Tihan, G. T.
    Rau, I.
    Silva, M. M.
    Nogueira, A. F.
    Kanicki, J.
    Kajzar, F.
    [J]. OPTICS AND PHOTONICS FOR COUNTERTERRORISM, CRIME FIGHTING, AND DEFENCE XI; AND OPTICAL MATERIALS AND BIOMATERIALS IN SECURITY AND DEFENCE SYSTEMS TECHNOLOGY XII, 2015, 9652
  • [45] Bio-inspired sensing and actuating materials
    Zhao, Qilong
    Wang, Yunlong
    Cui, Huanqing
    Du, Xuemin
    [J]. JOURNAL OF MATERIALS CHEMISTRY C, 2019, 7 (22) : 6493 - 6511
  • [46] Bio-inspired assembly of functional materials
    Naik, Rajesh R.
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 241
  • [47] Bio-inspired materials, synthesis and function
    Hawker, Craig
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [48] Bio-inspired fabrication of lotus leaf like membranes as fluorescent sensing materials
    Heng, Liping
    Wang, Xinyi
    Dong, Yongqiang
    Zhai, Jin
    Tang, Ben Zhong
    Wei, Tianxin
    Jiang, Lei
    [J]. CHEMISTRY-AN ASIAN JOURNAL, 2008, 3 (06) : 1041 - 1045
  • [49] FABRICATION AND CHARACTERIZATION OF BIO-INSPIRED STRUCTURAL COMPOSITES
    Allameh, Seyed M.
    Ogonek, Tom
    Cooper, Paul D.
    [J]. IMECE 2008: MECHANICS OF SOLIDS, STRUCTURES AND FLUIDS, VOL 12, 2009, : 369 - 372
  • [50] Bio-Inspired Subnanofluidics: Advanced Fabrication and Functionalization
    Hou, Jue
    Zhao, Chen
    Zhang, Huacheng
    [J]. SMALL METHODS, 2024, 8 (04)