Automatic Tuning of Sparse Matrix-Vector Multiplication for CRS format on GPUs

被引:10
|
作者
Yoshizawa, Hiroki [1 ]
Takahashi, Daisuke [2 ]
机构
[1] Univ Tsukuba, Grad Sch Syst & Informat Engn, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058573, Japan
[2] Univ Tsukuba, Fac Engn Informat & Syst, Tsukuba, Ibaraki 3058573, Japan
来源
15TH IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND ENGINEERING (CSE 2012) / 10TH IEEE/IFIP INTERNATIONAL CONFERENCE ON EMBEDDED AND UBIQUITOUS COMPUTING (EUC 2012) | 2012年
基金
日本科学技术振兴机构;
关键词
SpMV; CRS; CG; GPGPU; CUDA;
D O I
10.1109/ICCSE.2012.28
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Performance of sparse matrix-vector multiplication (SpMV) on GPUs is highly dependent on the structure of the sparse matrix used in the computation, the computing environment, and the selection of certain parameters. In this paper, we show that the performance achieved using kernel SpMV on GPUs for the compressed row storage (CRS) format depends greatly on optimal selection of a parameter, and we propose an efficient algorithm for the automatic selection of the optimal parameter. Kernel SpMV for the CRS format using automatic parameter selection achieves up to approximately 26% improvement over NVIDIA's CUSPARSE library. The conjugate gradient method is the most popular iterative method for solving sparse systems of linear equations. Kernel SpMV makes up the bulk of the conjugate gradient method calculations. By optimizing SpMV using our approach, the conjugate gradient method performs up to approximately 10% better than CULA Sparse.
引用
收藏
页码:130 / 136
页数:7
相关论文
共 50 条
  • [31] An architecture-aware technique for optimizing sparse matrix-vector multiplication on GPUs
    Maggioni, Marco
    Berger-Wolf, Tanya
    2013 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, 2013, 18 : 329 - 338
  • [32] Leveraging Memory Copy Overlap for Efficient Sparse Matrix-Vector Multiplication on GPUs
    Zeng, Guangsen
    Zou, Yi
    ELECTRONICS, 2023, 12 (17)
  • [33] A Performance Modeling and Optimization Analysis Tool for Sparse Matrix-Vector Multiplication on GPUs
    Guo, Ping
    Wang, Liqiang
    Chen, Po
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2014, 25 (05) : 1112 - 1123
  • [34] Sparse Matrix-Vector Multiplication on GPGPUs
    Filippone, Salvatore
    Cardellini, Valeria
    Barbieri, Davide
    Fanfarillo, Alessandro
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2017, 43 (04):
  • [35] Auto-tuning of Sparse Matrix-Vector Multiplication on Graphics Processors
    Abu-Sufah, Walid
    Karim, Asma Abdel
    SUPERCOMPUTING (ISC 2013), 2013, 7905 : 151 - 164
  • [36] TaiChi: A Hybrid Compression Format for Binary Sparse Matrix-Vector Multiplication on GPU
    Gao, Jianhua
    Ji, Weixing
    Tan, Zhaonian
    Wang, Yizhuo
    Shi, Feng
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2022, 33 (12) : 3732 - 3745
  • [37] CUDA-enabled Sparse Matrix-Vector Multiplication on GPUs using atomic operations
    Dang, Hoang-Vu
    Schmidt, Bertil
    PARALLEL COMPUTING, 2013, 39 (11) : 737 - 750
  • [38] An Efficient Two-Dimensional Blocking Strategy for Sparse Matrix-Vector Multiplication on GPUs
    Ashari, Arash
    Sedaghati, Naser
    Eisenlohr, John
    Sadayappan, P.
    PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON SUPERCOMPUTING, (ICS'14), 2014, : 273 - 282
  • [39] Performance Analysis of Sparse Matrix-Vector Multiplication (SpMV) on Graphics Processing Units (GPUs)
    AlAhmadi, Sarah
    Mohammed, Thaha
    Albeshri, Aiiad
    Katib, Iyad
    Mehmood, Rashid
    ELECTRONICS, 2020, 9 (10) : 1 - 30
  • [40] Hierarchical Matrix Operations on GPUs: Matrix-Vector Multiplication and Compression
    Boukaram, Wajih
    Turkiyyah, George
    Keyes, David
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2019, 45 (01):