Automatic Tuning of Sparse Matrix-Vector Multiplication for CRS format on GPUs

被引:10
|
作者
Yoshizawa, Hiroki [1 ]
Takahashi, Daisuke [2 ]
机构
[1] Univ Tsukuba, Grad Sch Syst & Informat Engn, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058573, Japan
[2] Univ Tsukuba, Fac Engn Informat & Syst, Tsukuba, Ibaraki 3058573, Japan
来源
15TH IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND ENGINEERING (CSE 2012) / 10TH IEEE/IFIP INTERNATIONAL CONFERENCE ON EMBEDDED AND UBIQUITOUS COMPUTING (EUC 2012) | 2012年
基金
日本科学技术振兴机构;
关键词
SpMV; CRS; CG; GPGPU; CUDA;
D O I
10.1109/ICCSE.2012.28
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Performance of sparse matrix-vector multiplication (SpMV) on GPUs is highly dependent on the structure of the sparse matrix used in the computation, the computing environment, and the selection of certain parameters. In this paper, we show that the performance achieved using kernel SpMV on GPUs for the compressed row storage (CRS) format depends greatly on optimal selection of a parameter, and we propose an efficient algorithm for the automatic selection of the optimal parameter. Kernel SpMV for the CRS format using automatic parameter selection achieves up to approximately 26% improvement over NVIDIA's CUSPARSE library. The conjugate gradient method is the most popular iterative method for solving sparse systems of linear equations. Kernel SpMV makes up the bulk of the conjugate gradient method calculations. By optimizing SpMV using our approach, the conjugate gradient method performs up to approximately 10% better than CULA Sparse.
引用
收藏
页码:130 / 136
页数:7
相关论文
共 50 条
  • [21] Optimization of sparse matrix-vector multiplication using reordering techniques on GPUs
    Pichel, Juan C.
    Rivera, Francisco F.
    Fernandez, Marcos
    Rodriguez, Aurelio
    MICROPROCESSORS AND MICROSYSTEMS, 2012, 36 (02) : 65 - 77
  • [22] Optimizing Sparse Matrix-Vector Multiplication on GPUs via Index Compression
    Sun, Xue
    Wei, Kai-Cheng
    Lai, Lien-Fu
    Tsai, Sung-Han
    Wu, Chao-Chin
    PROCEEDINGS OF 2018 IEEE 3RD ADVANCED INFORMATION TECHNOLOGY, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IAEAC 2018), 2018, : 598 - 602
  • [23] A Novel CSR-Based Sparse Matrix-Vector Multiplication on GPUs
    He, Guixia
    Gao, Jiaquan
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2016, 2016
  • [24] CoAdELL: Adaptivity and Compression for Improving Sparse Matrix-Vector Multiplication on GPUs
    Maggioni, Marco
    Berger-Wolf, Tanya
    PROCEEDINGS OF 2014 IEEE INTERNATIONAL PARALLEL & DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS (IPDPSW), 2014, : 934 - 941
  • [25] Fast Sparse Matrix-Vector Multiplication on GPUs: Implications for Graph Mining
    Yang, Xintian
    Parthasarathy, Srinivasan
    Sadayappan, P.
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2011, 4 (04): : 231 - 242
  • [26] Auto-Tuning of Thread Assignment for Matrix-Vector Multiplication on GPUs
    Wang, Jinwei
    Ma, Xirong
    Zhu, Yuanping
    Sun, Jizhou
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2013, E96D (11): : 2319 - 2326
  • [27] Heterogeneous sparse matrix-vector multiplication via compressed sparse row format
    Lane, Phillip Allen
    Booth, Joshua Dennis
    PARALLEL COMPUTING, 2023, 115
  • [28] Efficient Sparse Matrix-Vector Multiplication on GPUs using the CSR Format, Pinned Memory and Overlap Data Transfer
    Huillcen Baca, Herwin Alayn
    Palomino Valdivia, Flor de Luz
    PROCEEDINGS OF THE 2019 IEEE XXVI INTERNATIONAL CONFERENCE ON ELECTRONICS, ELECTRICAL ENGINEERING AND COMPUTING (INTERCON), 2019,
  • [29] Automatically Tuning Sparse Matrix-Vector Multiplication for GPU Architectures
    Monakov, Alexander
    Lokhmotov, Anton
    Avetisyan, Arutyun
    HIGH PERFORMANCE EMBEDDED ARCHITECTURES AND COMPILERS, PROCEEDINGS, 2010, 5952 : 111 - +
  • [30] A hybrid format for better performance of sparse matrix-vector multiplication on a GPU
    Guo, Dahai
    Gropp, William
    Olson, Luke N.
    INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS, 2016, 30 (01): : 103 - 120