Vortex tension as an order parameter in three-dimensional U(1) plus Higgs theory

被引:23
|
作者
Kajantie, K
Laine, M
Neuhaus, T
Peisa, J
Rajantie, A
Rummukainen, K
机构
[1] Univ Helsinki, Dept Phys, FIN-00014 Helsinki, Finland
[2] Univ Helsinki, Helsinki Inst Phys, FIN-00014 Helsinki, Finland
[3] Univ Bielefeld, Fak Phys, D-33501 Bielefeld, Germany
[4] Univ Coll Swansea, Dept Phys, Swansea SA2 8PP, W Glam, Wales
[5] NORDITA, DK-2100 Copenhagen O, Denmark
关键词
cosmic strings; superconductivity; lattice simulations; critical behaviour;
D O I
10.1016/S0550-3213(99)00033-4
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We use lattice Monte Carlo simulations to study non-perturbatively the tension, i.e. the free energy per unit length, of an infinitely long vortex in the three-dimensional U(1) + Higgs theory, This theory is the low-energy effective theory of high-temperature scalar electrodynamics, the standard framework for cosmic string studies. The vortex tension is measured as a function of the mass parameter at a large value of the Higgs self-coupling, where the transition between the phases is continuous. It is shown that the tension gives an order parameter that can distinguish between the two phases of the system. We argue that the vortex tension can describe the physics of long strings without lattice artifacts, unlike vortex network percolation. (C) 1999 Elsevier Science B.V.
引用
收藏
页码:351 / 365
页数:15
相关论文
共 50 条
  • [41] A numerical analysis of three-dimensional vortex trapping
    California Polytech. Stt. University, San Luis Obispo, CA 93407, United States
    不详
    Aircraft Des, 1 (61-73):
  • [42] Stable three-dimensional Langmuir vortex soliton
    Lashkin, Volodymyr M.
    PHYSICS OF PLASMAS, 2020, 27 (04)
  • [43] Three-dimensional nanoscale optical vortex profilometry
    Sokolenko, Bogdan V.
    Poletaev, Dmitrii A.
    NANOIMAGING AND NANOSPECTROSCOPY V, 2017, 10350
  • [44] Singularity formation in three-dimensional vortex sheets
    Hou, TY
    Hu, G
    Zhang, PW
    PHYSICS OF FLUIDS, 2003, 15 (01) : 147 - 172
  • [45] Three-dimensional vortex structure on a rotating wing
    Ozen, Cem A.
    Rockwell, D.
    JOURNAL OF FLUID MECHANICS, 2012, 707 : 541 - 550
  • [46] Three-dimensional turbulence without vortex stretching
    Bos, Wouter J. T.
    JOURNAL OF FLUID MECHANICS, 2021, 915
  • [47] Three-dimensional instability of an elliptic Kirchhoff vortex
    Vladimirov, V.A.
    Il'in, K.I.
    Fluid Dynamics, 1988, 23 (03) : 356 - 360
  • [48] Three-dimensional instability during vortex merging
    Meunier, P
    Leweke, T
    PHYSICS OF FLUIDS, 2001, 13 (10) : 2747 - 2750
  • [49] Three-Dimensional Wake of Nonconventional Vortex Generators
    Wang, Sen
    Ghaemi, Sina
    AIAA JOURNAL, 2019, 57 (03) : 949 - 961
  • [50] Vortex breakdown in a three-dimensional swirling flow
    Serre, E
    Bontoux, P
    JOURNAL OF FLUID MECHANICS, 2002, 459 : 347 - 370