Vortex tension as an order parameter in three-dimensional U(1) plus Higgs theory

被引:23
|
作者
Kajantie, K
Laine, M
Neuhaus, T
Peisa, J
Rajantie, A
Rummukainen, K
机构
[1] Univ Helsinki, Dept Phys, FIN-00014 Helsinki, Finland
[2] Univ Helsinki, Helsinki Inst Phys, FIN-00014 Helsinki, Finland
[3] Univ Bielefeld, Fak Phys, D-33501 Bielefeld, Germany
[4] Univ Coll Swansea, Dept Phys, Swansea SA2 8PP, W Glam, Wales
[5] NORDITA, DK-2100 Copenhagen O, Denmark
关键词
cosmic strings; superconductivity; lattice simulations; critical behaviour;
D O I
10.1016/S0550-3213(99)00033-4
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We use lattice Monte Carlo simulations to study non-perturbatively the tension, i.e. the free energy per unit length, of an infinitely long vortex in the three-dimensional U(1) + Higgs theory, This theory is the low-energy effective theory of high-temperature scalar electrodynamics, the standard framework for cosmic string studies. The vortex tension is measured as a function of the mass parameter at a large value of the Higgs self-coupling, where the transition between the phases is continuous. It is shown that the tension gives an order parameter that can distinguish between the two phases of the system. We argue that the vortex tension can describe the physics of long strings without lattice artifacts, unlike vortex network percolation. (C) 1999 Elsevier Science B.V.
引用
收藏
页码:351 / 365
页数:15
相关论文
共 50 条
  • [31] The interface tension of the three-dimensional Ising model in two-loop order
    Hoppe, P
    Munster, G
    PHYSICS LETTERS A, 1998, 238 (4-5) : 265 - 270
  • [32] The spectrum of the three-dimensional adjoint Higgs model and hot SU(2) gauge theory
    Hart, A
    Philipsen, O
    NUCLEAR PHYSICS B, 2000, 572 (1-2) : 243 - 265
  • [33] Surface tension-controlled three-dimensional water molds: theory and applications
    Goff, Chandra M.
    Chao, Shih-hui
    Johnson, Roger H.
    Meldrum, Deirdre R.
    MICROFLUIDICS AND NANOFLUIDICS, 2012, 13 (06) : 891 - 897
  • [34] Surface tension-controlled three-dimensional water molds: theory and applications
    Chandra M. Goff
    Shih-hui Chao
    Roger H. Johnson
    Deirdre R. Meldrum
    Microfluidics and Nanofluidics, 2012, 13 : 891 - 897
  • [35] Four-loop lattice-regularized vacuum energy density of the three-dimensional SU(3) plus adjoint Higgs theory
    Di Renzo, F.
    Laine, M.
    Schroeder, Y.
    Torrero, C.
    JOURNAL OF HIGH ENERGY PHYSICS, 2008, (09):
  • [36] Vortex line ordering in the driven three-dimensional vortex glass
    Ghosh, Ajay Kumar
    Olsson, Peter
    Teitel, S.
    PHYSICAL REVIEW LETTERS, 2006, 97 (26)
  • [37] Existence theory of fractional order three-dimensional differential system at resonance
    Kumar, M. Sathish
    Deepa, M.
    Kavitha, J.
    Sadhasivam, V.
    MATHEMATICAL MODELLING AND CONTROL, 2023, 3 (02): : 127 - 138
  • [38] Theory of magnetic order in the three-dimensional spatially anisotropic Heisenberg model
    Siurakshina, L
    Ihle, D
    Hayn, R
    PHYSICAL REVIEW B, 2000, 61 (21): : 14601 - 14606
  • [39] THE SUPRESSION OF THREE-DIMENSIONAL JUNCTURE HORSESHOE VORTEX
    Huang, C.-W.
    Chen, J.-H.
    Journal of Taiwan Society of Naval Architects and Marine Engineers, 2019, 38 (01): : 27 - 36
  • [40] Three-dimensional vortex structures in a cylinder wake
    Wu, J
    Sheridan, J
    Welsh, MC
    Hourigan, K
    JOURNAL OF FLUID MECHANICS, 1996, 312 : 201 - 222