A Flexible ZnO Nanowire-Based Humidity Sensor

被引:25
|
作者
Hsueh, H. T. [1 ,2 ]
Hsueh, T. J. [2 ]
Chang, S. J. [3 ,4 ]
Hung, F. Y. [5 ]
Hsu, C. L. [6 ]
Dai, B. T. [2 ]
Lam, K. T. [7 ]
Wen, K. H. [7 ]
机构
[1] Natl Cheng Kung Univ, Inst Nanotechnol & Microsyst Engn, Tainan 701, Taiwan
[2] Natl Nano Device Labs, Tainan 741, Taiwan
[3] Natl Cheng Kung Univ, Inst Microelect, Ctr Miscro Nano Sci & Technol, Adv Optoelect Technol Ctr, Tainan 701, Taiwan
[4] Natl Cheng Kung Univ, Dept Elect Engn, Ctr Miscro Nano Sci & Technol, Adv Optoelect Technol Ctr, Tainan 701, Taiwan
[5] Natl Cheng Kung Univ, Inst Nanotechnol & Microsyst Engn, Tainan 701, Taiwan
[6] Natl Univ Tainan, Dept Elect Engn, Tainan 700, Taiwan
[7] Fuzhou Univ, Coll Phys & Informat Engn, Fuzhou 350002, Peoples R China
关键词
Flexible substrate; humidity sensor; ZnO nanowires (NWs); GAS SENSORS; THIN-FILMS; NANORODS; GROWTH; TEMPERATURE; ARRAYS; FABRICATION; COMPOSITE; MICRORODS; TIO2;
D O I
10.1109/TNANO.2011.2168975
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, the authors report the direct growth of ZnO nanowires (NWs) on a flexible substrate by the hydrothermal process and the fabrication of ZnO NW-based humidity sensor. It was found that average length and diameter of the ZnO NWs were 0.6 mu m and 50 nm, respectively. It was also found that resistance of the ZnO NWs decreased by 45% as we increased the relative humidity from 52% to 90%. Furthermore, it was found that measured resistance was very stable with negligible fluctuation after 16 days continuous testing.
引用
收藏
页码:520 / 525
页数:6
相关论文
共 50 条
  • [1] A ZnO nanowire-based humidity sensor
    Chang, Sheng-Po
    Chang, Shoou-Jinn
    Lu, Chien-Yuan
    Li, Meng-Ju
    Hsu, Cheng-Liang
    Chiou, Yu-Zung
    Hsueh, Ting-Jen
    Chen, I-Cherng
    SUPERLATTICES AND MICROSTRUCTURES, 2010, 47 (06) : 772 - 778
  • [2] CuO Nanowire-Based Humidity Sensor
    Wang, Sheng-Bo
    Hsiao, Chih-Hung
    Chang, Shoou-Jinn
    Lam, Kin-Tak
    Wen, Kuo-Hsun
    Young, Sheng-Joue
    Hung, Shang-Chao
    Huang, Bohr-Ran
    IEEE SENSORS JOURNAL, 2012, 12 (06) : 1884 - 1888
  • [3] ZnO Nanowire-based Oxygen Gas Sensor
    Lu, C. Y.
    Chang, S. P.
    Chang, S. J.
    EDSSC: 2008 IEEE INTERNATIONAL CONFERENCE ON ELECTRON DEVICES AND SOLID-STATE CIRCUITS, 2008, : 268 - 271
  • [4] ZnO Nanowire-Based Oxygen Gas Sensor
    Lu, Chien-Yuan
    Chang, Sheng-Po
    Chang, Shoou-Jinn
    Hsueh, Ting-Jen
    Hsu, Cheng-Liang
    Chiou, Yu-Zung
    Chen, Cherng
    IEEE SENSORS JOURNAL, 2009, 9 (04) : 485 - 489
  • [5] ZnO nanowire-based flexible sensors for pressure and temperature monitoring
    Nikolaeva, Aleksandra, V
    Kondratev, Valeriy M.
    Kadinskaya, Svetlana A.
    Kolesina, Diana E.
    Zubov, Fedor I.
    Anikina, Maria A.
    Dvoretckaia, Liliia N.
    Lendyashova, Vera V.
    Gridchin, Vladislav O.
    Monastyrenko, Anatoliy O.
    Krasnikov, Dmitry, V
    Nasibulin, Albert G.
    Kochetkov, Fedor M.
    Bolshakov, Alexey D.
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2025, 189
  • [6] Fabrication and Characterization of ZnO Single Nanowire-Based Hydrogen Sensor
    Das, Sachindra Nath
    Kar, Jyoti Prakash
    Choi, Ji-Hyuk
    Lee, Tae Il
    Moon, Kyeong-Ju
    Myoung, Jae-Min
    JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (03): : 1689 - 1693
  • [7] Nanowire-based hydrogen sensor
    Dagani, R
    CHEMICAL & ENGINEERING NEWS, 2001, 79 (39) : 14 - 14
  • [8] Dielectrophoretic fabrication and chacterization of ZnO nanowire-based acetylene gas sensor
    Kawabe, Yuki
    Li, Li
    Nakano, Michihiko
    Suehiro, Junya
    2015 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY (ICIT), 2015, : 1433 - 1436
  • [9] Silver Nanowire-Based Flexible Strain Sensor for Human Motion Detection
    Mijit, Abduweli
    Li, Shuo
    Wang, Qiang
    Li, Mingzhou
    Tai, Yanlong
    SENSORS, 2024, 24 (11)
  • [10] ZnO Nanowire-Based UV Photodetector
    Lu, Chien-Yuan
    Chang, Sheng-Po
    Chang, Shoou-Jinn
    Hsu, Cheng-Liang
    Chiou, Yu-Zung
    Chen, I-Cherng
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2010, 10 (02) : 1135 - 1138