3D Localization of weak scatterers in digital holographic microscopy using Rayleigh-Sommerfeld back-propagation

被引:47
|
作者
Wilson, Laurence [1 ]
Zhang, Rongjing [1 ]
机构
[1] Rowland Inst Harvard, Cambridge, MA 02142 USA
来源
OPTICS EXPRESS | 2012年 / 20卷 / 15期
关键词
IN-LINE HOLOGRAPHY; PARTICLE TRACKING; VIDEO MICROSCOPY; LIGHT; RECONSTRUCTION; AMPLITUDE; DYNAMICS; COLLOIDS; SPACE; IMAGE;
D O I
10.1364/OE.20.016735
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The Rayleigh-Sommerfeld back-propagation method is a fast and highly flexible volume reconstruction scheme for digital holographic microscopy. We present a new method for 3D localization of weakly scattering objects using this technique. A well-known aspect of classical optics (the Gouy phase shift) can be used to discriminate between objects lying on either side of the holographic image plane. This results in an unambiguous, model-free measurement of the axial coordinate of microscopic samples, and is demonstrated both on an individual colloidal sphere, and on a more complex object - a layer of such particles in close contact. (C) 2012 Optical Society of America
引用
收藏
页码:16735 / 16744
页数:10
相关论文
共 50 条
  • [1] Separating twin images in digital holographic microscopy using weak scatterers
    Shangraw, Maxwell
    Ling, Hangjian
    APPLIED OPTICS, 2021, 60 (03) : 626 - 634
  • [2] Stochastic 3D optical mapping by holographic localization of Brownian scatterers
    Martinez-Marrades, Ariadna
    Rupprecht, Jean-Francois
    Gross, Michel
    Tessier, Gilles
    OPTICS EXPRESS, 2014, 22 (23): : 29191 - 29203
  • [3] Common-path digital holographic microscopy for 3D nanoparticle-localization
    Neutsch, Krisztian
    Goering, Lena
    Gerhardt, Nils C.
    NANOIMAGING AND NANOSPECTROSCOPY VI, 2018, 10726
  • [4] 3D tracking method based on digital holographic microscopy
    Li, Xinyu
    Li, Chenxi
    Yang, Zhonghong
    Zhao, Dongjie
    Zhai, Jia
    Chen, Wenliang
    Liu, Rong
    JOURNAL OF OPTICS, 2025, 27 (02)
  • [5] 3D nuclear track analysis by digital holographic microscopy
    Palacios, F.
    Palacios Fernandez, D.
    Ricardo, J.
    Palacios, G. F.
    Sajo-Bohus, L.
    Goncalves, E.
    Valin, J. L.
    Monroy, F. A.
    RADIATION MEASUREMENTS, 2011, 46 (01) : 98 - 103
  • [6] Numerical simulation of 3D Fox-Li integral equation described by Rayleigh-Sommerfeld diffraction for MEMS-VCSEL
    Suzuki, Yuta
    Tezuka, Shin-ichiro
    OPTICAL REVIEW, 2019, 26 (05) : 430 - 435
  • [7] 3D printing optimization algorithm based on back-propagation neural network
    Yan, Jinshun
    JOURNAL OF ENGINEERING DESIGN AND TECHNOLOGY, 2020, 18 (05) : 1223 - 1230
  • [8] Digital holographic microscopy for 3D surface characterization of polymeric nanocomposites
    Abbasian, Vahid
    Akhlaghi, Ehsan A.
    Charsooghi, Mohammad A.
    Bazzar, Maasoomeh
    Moradi, Ali-Reza
    ULTRAMICROSCOPY, 2018, 185 : 72 - 80
  • [9] Digital holographic microscopy for automated 3D cell identification: an overview
    Anand, Arun
    Javidi, Bahram
    CHINESE OPTICS LETTERS, 2014, 12 (06)
  • [10] Quantitative analysis of platelets aggregates in 3D by digital holographic microscopy
    Boudejltia, Karim Zouaoui
    de Sousa, Daniel Ribeiro
    Uzureau, Pierrick
    Yourassowsky, Catherine
    Perez-Morga, David
    Courbebaisse, Guy
    Chopard, Bastien
    Dubois, Frank
    BIOMEDICAL OPTICS EXPRESS, 2015, 6 (09): : 3556 - 3563