Robust estimation of a dynamic spatio-temporal model with structural change

被引:1
|
作者
Villejo, Stephen Jun V. [1 ]
Barrios, Erniel B. [1 ]
Lansangan, Joseph Ryan G. [1 ]
机构
[1] Univ Philippines Diliman, Sch Stat, Quezon City, Philippines
关键词
Spatio-temporal model; backfitting algorithm; bootstrap; forward search; dynamic model;
D O I
10.1080/00949655.2016.1217536
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We postulate a dynamic spatio-temporal model with constant covariate effect but with varying spatial effect over time and varying temporal effect across locations. To mitigate the effect of temporary structural change, the model can be estimated using the backfitting algorithm embedded with forward search algorithm and bootstrap. A simulation study is designed to evaluate structural optimality of the model with the estimation procedure. The fitted model exhibit superior predictive ability relative to the linear model. The proposed algorithm also consistently produced lower relative bias and standard errors for the spatial parameter estimates. While additional neighbourhoods do not necessarily improve predictive ability of the model, it trims down relative bias on the parameter estimates, specially for spatial parameter. Location of the temporary structural change along with the degree of structural change contributes to lower relative bias of parameter estimates and in better predictive ability of the model. The estimation procedure is able to produce parameter estimates that are robust to the occurrence of temporary structural change.
引用
收藏
页码:505 / 518
页数:14
相关论文
共 50 条
  • [31] Estimation of spatio-temporal extreme distribution using a quantile factor model
    Joonpyo Kim
    Seoncheol Park
    Junhyeon Kwon
    Yaeji Lim
    Hee-Seok Oh
    Extremes, 2021, 24 : 177 - 195
  • [32] SMALL AREA ESTIMATION USING A SPATIO-TEMPORAL LINEAR MIXED MODEL
    Pereira, Luis N.
    Coelho, Pedro S.
    REVSTAT-STATISTICAL JOURNAL, 2012, 10 (03) : 285 - 308
  • [33] SPATIO-TEMPORAL HUMAN MOTION ESTIMATION USING DYNAMIC CONDITIONAL RANDOM FIELD
    Ardiyanto, Igi
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2018, 14 (02): : 747 - 755
  • [34] Robust estimation of a multilevel model with structural change
    Esmenda, Mary Jane
    Barrios, Erniel B.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2018, 47 (04) : 1014 - 1027
  • [35] Dynamic Assessment on the Landscape Patterns and Spatio-temporal Change in the mainstream of Tarim River
    Zhang, Hui
    Xue, Lianqing
    Yang, Changbing
    Chen, Xinfang
    Zhang, Luochen
    Wei, Guanghui
    2017 3RD INTERNATIONAL CONFERENCE ON ENVIRONMENTAL SCIENCE AND MATERIAL APPLICATION (ESMA2017), VOLS 1-4, 2018, 108
  • [36] Robust Estimation of a Spatiotemporal Model with Structural Change
    Bastero, Rowena F.
    Barrios, Erniel B.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2011, 40 (03) : 448 - 468
  • [37] Spatio-Temporal Sensor Graphs (STSG): A data model for the discovery of spatio-temporal patterns
    George, Betsy
    Kang, James M.
    Shekhar, Shashi
    INTELLIGENT DATA ANALYSIS, 2009, 13 (03) : 457 - 475
  • [38] A hierarchical spatio-temporal data model for dynamic monitoring of land use
    Wang, Hao
    Liu, Yaolin
    GEOINFORMATICS 2007: GEOSPATIAL INFORMATION SCIENCE, PTS 1 AND 2, 2007, 6753
  • [39] Robust spatio-temporal saliency estimation method for H.264 compressed videos
    Sandula, Pavan
    Okade, Manish
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (27) : 39021 - 39039
  • [40] Robust sensor location for parameter estimation in iterative learning control of spatio-temporal systems
    Kowalow, Damian
    Patan, Maciej
    2017 10TH INTERNATIONAL WORKSHOP ON MULTIDIMENSIONAL (ND) SYSTEMS (NDS), 2017,