A spatiotemporal model is postulated and estimated using a procedure that infuses the forward search algorithm and maximum likelihood estimation into the backfitting framework. The forward search algorithm filters the effect of temporary structural change in the estimation of covariate and spatial parameters. Simulation studies illustrate capability of the method in producing robust estimates of the parameters even in the presence of structural change. The method provides good model fit even for small sample sizes in short time series data and good predictions for a wide range of lengths of contamination periods and levels of severity of contamination.
机构:
Univ Philippines, UP Diliman, Sch Stat, Sch Stat Bldg, Quezon City 1101, PhilippinesUniv Philippines, UP Diliman, Sch Stat, Sch Stat Bldg, Quezon City 1101, Philippines
Campano, Wendell Q.
Barrios, Erniel B.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Philippines, UP Diliman, Sch Stat, Sch Stat Bldg, Quezon City 1101, PhilippinesUniv Philippines, UP Diliman, Sch Stat, Sch Stat Bldg, Quezon City 1101, Philippines
机构:
Luoyang Normal Univ, Sch Informat Technol, Luoyang, Peoples R ChinaLuoyang Normal Univ, Sch Informat Technol, Luoyang, Peoples R China
Zhang, Jiyong
Wang, Bo
论文数: 0引用数: 0
h-index: 0
机构:
Luoyang Normal Univ, Sch Informat Technol, Luoyang, Peoples R ChinaLuoyang Normal Univ, Sch Informat Technol, Luoyang, Peoples R China
Wang, Bo
Naeem, Hamad
论文数: 0引用数: 0
h-index: 0
机构:
Univ Hradec Kralove, Fac Informat & Management, Ctr Basic & Appl Res, Hradec Kralove, Czech RepublicLuoyang Normal Univ, Sch Informat Technol, Luoyang, Peoples R China
Naeem, Hamad
Dai, Shengxin
论文数: 0引用数: 0
h-index: 0
机构:
Sichuan Univ, Sch Comp Sci, Chengdu, Peoples R ChinaLuoyang Normal Univ, Sch Informat Technol, Luoyang, Peoples R China