Double Penalized Quantile Regression for the Linear Mixed Effects Model

被引:5
|
作者
Li, Hanfang [1 ,2 ]
Liu, Yuan [3 ]
Luo, Youxi [1 ]
机构
[1] Hubei Univ Technol, Sch Sci, Wuhan 430068, Peoples R China
[2] Cent China Normal Univ, Wuhan 430079, Peoples R China
[3] Emory Univ, Rollins Sch Publ Hlth, Atlanta, GA 30322 USA
关键词
Double penalized; fixed effects; quantile regression; random effects; variable selection; COVARIANCE STRUCTURE; VARIABLE SELECTION; INFORMATION;
D O I
10.1007/s11424-020-9065-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper proposes a double penalized quantile regression for linear mixed effects model, which can select fixed and random effects simultaneously. Instead of using two tuning parameters, the proposed iterative algorithm enables only one optimal tuning parameter in each step and is more efficient. The authors establish asymptotic normality for the proposed estimators of quantile regression coefficients. Simulation studies show that the new method is robust to a variety of error distributions at different quantiles. It outperforms the traditional regression models under a wide array of simulated data models and is flexible enough to accommodate changes in fixed and random effects. For the high dimensional data scenarios, the new method still can correctly select important variables and exclude noise variables with high probability. A case study based on a hierarchical education data illustrates a practical utility of the proposed approach.
引用
收藏
页码:2080 / 2102
页数:23
相关论文
共 50 条