Dynamics of capillary self-alignment for mesoscopic foil devices

被引:10
|
作者
Arutinov, Gari [1 ,2 ]
Mastrangeli, Massimo [3 ]
Smits, Edsger C. P. [1 ]
Schoo, Herman F. M. [1 ]
Brugger, Juergen [3 ]
Dietzel, Andreas [4 ]
机构
[1] TNO, Holst Ctr, NL-5656 AE Eindhoven, Netherlands
[2] Eindhoven Univ Technol, Micro & Nanoscale Engn Sect MNSE, NL-5600 MB Eindhoven, Netherlands
[3] Ecole Polytech Fed Lausanne, Microsyst Lab, Lausanne, Switzerland
[4] Tech Univ Carolo Wilhelmina Braunschweig, Inst Mikrotech, D-38106 Braunschweig, Germany
关键词
D O I
10.1063/1.4801088
中图分类号
O59 [应用物理学];
学科分类号
摘要
We report experimental evidence for three sequential, distinct dynamic regimes in the capillary self-alignment of centimeter-sized foil dies released at large uniaxial offsets from equilibrium. We show that the initial transient wetting regime, along with inertia and wetting properties of the dies, significantly affect the alignment dynamics including the subsequent constant acceleration and damped oscillatory regimes. An analytical force model is proposed that accounts for die wetting and matches quasi-static numerical simulations. Discrepancies with experimental data point to the need for a comprehensive dynamical model to capture the full system dynamics. (C) 2013 American Institute of Physics.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Low-height sharp edged patterns for capillary self-alignment assisted hybrid microassembly
    Chang B.
    Shah A.
    Routa I.
    Lipsanen H.
    Zhou Q.
    Zhou, Quan (quan.zhou@aalto.fi), 1600, Springer Verlag (09): : 1 - 10
  • [42] Capillary Self-Alignment Assisted Hybrid Robotic Handling for Ultra-Thin Die Stacking
    Liimatainen, Ville
    Kharboutly, Mohamed
    Rostoucher, David
    Gauthier, Michael
    Zhou, Quan
    2013 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2013, : 1403 - 1408
  • [43] Self-alignment of micro-parts using capillary interaction: Unified modeling and misalignment analysis
    Gao, ShiQing
    Zhou, YouHe
    MICROELECTRONICS RELIABILITY, 2013, 53 (08) : 1137 - 1148
  • [44] Crescent Shaped Patterns for Self-alignment of Micro-parts: Part II - Self-alignment Demonstration and Conductivity Evaluation
    Liu, Mengqing
    Wang, Dong F.
    Shiga, Shouhei
    Ishida, Takao
    Maeda, Ryutaro
    2014 SYMPOSIUM ON DESIGN, TEST, INTEGRATION AND PACKAGING OF MEMS/MOEMS (DTIP), 2014, : 308 - 311
  • [45] Automated self-alignment procedure for optical correlators
    MontesUsategui, M
    Monroe, SE
    Juday, RD
    OPTICAL ENGINEERING, 1997, 36 (06) : 1782 - 1791
  • [46] Self-alignment procedure for IMU in automotive context
    Carratu, Marco
    Dello Iacono, Salvatore
    Pietrosanto, Antonio
    Paciello, Vincenzo
    2019 IEEE 17TH INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS (INDIN), 2019, : 1815 - 1820
  • [47] Parametric design for resin self-alignment capability
    Kim, JM
    Fujimoto, K
    IEICE TRANSACTIONS ON ELECTRONICS, 2003, E86C (10): : 2129 - 2136
  • [48] Gradient Self-alignment in Private Deep Learning
    Bani-Harouni, David
    Mueller, Tamara T.
    Rueckert, Daniel
    Kaissis, Georgios
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023 WORKSHOPS, 2023, 14393 : 89 - 97
  • [49] Self-Alignment Pretraining for Biomedical Entity Representations
    Liu, Fangyu
    Shareghi, Ehsan
    Meng, Zaiqiao
    Basaldella, Marco
    Collier, Nigel
    2021 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL-HLT 2021), 2021, : 4228 - 4238
  • [50] Dynamic modeling for resin self-alignment mechanism
    Kim, JM
    Shin, YE
    Fujimoto, K
    MICROELECTRONICS RELIABILITY, 2004, 44 (06) : 983 - 992