Engineering quantum Hall phases in a synthetic bilayer graphene system

被引:8
|
作者
Cian, Ze-Pei [1 ,2 ]
Grass, Tobias [1 ,2 ,3 ]
Vaezi, Abolhassan [4 ]
Liu, Zhao [5 ]
Hafezi, Mohammad [1 ,2 ,6 ]
机构
[1] Univ Maryland, Dept Phys, College Pk, MD 20742 USA
[2] Univ Maryland, NIST, Joint Quantum Inst, College Pk, MD 20742 USA
[3] Barcelona Inst Sci & Technol, ICFO Inst Ciencies Foton, Castelldefels 08860, Barcelona, Spain
[4] Sharif Univ Technol, Dept Phys, Tehran 1458889694, Iran
[5] Zhejiang Univ, Zhejiang Inst Modern Phys, Hangzhou 310027, Peoples R China
[6] Univ Maryland, Inst Res Elect & Appl Phys, College Pk, MD 20742 USA
基金
中国国家自然科学基金;
关键词
SKYRMIONS; EXCITATIONS; STATISTICS; HIERARCHY; INTEGER; STATES; WELLS;
D O I
10.1103/PhysRevB.102.085430
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Synthetic quantum Hall bilayer (SQHB), realized by optically driven monolayer graphene in the quantum Hall regime, provides a flexible platform for engineering quantum Hall phases as discussed in Ghazaryan et al. [Phys. Rev. Lett. 119, 247403 (2017)]. The coherent driving which couples two Landau levels mimics an effective tunneling between synthetic layers. The tunneling strength, the effective Zeeman coupling, and two-body interaction matrix elements are tunable by varying the driving frequency and the driving strength. Using infinite density matrix renormalization group techniques combined with exact diagonalization, we show that the system exhibits a non-Abelian bilayer Fibonacci phase at filling fraction nu = 2/3. Moreover, at integer filling nu = 1, the SQHB exhibits quantum Hall ferromagnetism. Using Hartree-Fock theory and exact diagonalization, we show that excitations of the quantum Hall ferromagnet are topological textures known as skyrmions.
引用
下载
收藏
页数:9
相关论文
共 50 条
  • [1] Tunable fractional quantum Hall phases in bilayer graphene
    Maher, Patrick
    Wang, Lei
    Gao, Yuanda
    Forsythe, Carlos
    Taniguchi, Takashi
    Watanabe, Kenji
    Abanin, Dmitry
    Papic, Zlatko
    Cadden-Zimansky, Paul
    Hone, James
    Kim, Philip
    Dean, Cory R.
    SCIENCE, 2014, 345 (6192) : 61 - 64
  • [2] Quantum Hall ferromagnetic phases in the Landau level N=0 of a graphene bilayer
    Lambert, J.
    Cote, R.
    PHYSICAL REVIEW B, 2013, 87 (11)
  • [3] Spin-valley coherent phases of the ν=0 quantum Hall state in bilayer graphene
    Murthy, Ganpathy
    Shimshoni, Efrat
    Fertig, H. A.
    PHYSICAL REVIEW B, 2017, 96 (24)
  • [4] Bilayer coherent and quantum Hall phases: Duality and quantum disorder
    Demler, E
    Nayak, C
    Das Sarma, S
    PHYSICAL REVIEW LETTERS, 2001, 86 (09) : 1853 - 1856
  • [5] Quantum Hall effect in bilayer and trilayer graphene
    Cobaleda, C.
    Rossella, F.
    Pezzini, S.
    Diez, E.
    Bellani, V.
    Maude, D. K.
    Blake, P.
    PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 9, NO 6, 2012, 9 (06): : 1411 - 1414
  • [6] Quantum anomalous Hall state in bilayer graphene
    Nandkishore, Rahul
    Levitov, Leonid
    PHYSICAL REVIEW B, 2010, 82 (11):
  • [7] Quantum Hall Effect in Twisted Bilayer Graphene
    Lee, Dong Su
    Riedl, Christian
    Beringer, Thomas
    Castro Neto, A. H.
    von Klitzing, Klaus
    Starke, Ulrich
    Smet, Jurgen H.
    PHYSICAL REVIEW LETTERS, 2011, 107 (21)
  • [8] Quantum Hall activation gaps in bilayer graphene
    Kurganova, E. V.
    Giesbers, A. J. M.
    Gorbachev, R. V.
    Geim, A. K.
    Novoselov, K. S.
    Maan, J. C.
    Zeitler, U.
    SOLID STATE COMMUNICATIONS, 2010, 150 (45-46) : 2209 - 2211
  • [9] Quantum Hall ferroelectric helix in bilayer graphene
    Jolicoeur, Thierry
    Toke, Csaba
    Sodemann, Inti
    PHYSICAL REVIEW B, 2019, 99 (11)
  • [10] Quantum Hall effect in biased bilayer graphene
    Ma, R.
    Zhu, L. J.
    Sheng, L.
    Liu, M.
    Sheng, D. N.
    EPL, 2009, 87 (01)