Fractal interpolation

被引:1
|
作者
Dashow, J
Lorenzo, PS
机构
关键词
D O I
10.2307/3681259
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
引用
收藏
页码:8 / 10
页数:3
相关论文
共 50 条
  • [21] Fractal interpolation: a sequential approach
    N.Vijender
    M.A.Navascués
    [J]. Applied Mathematics:A Journal of Chinese Universities, 2021, 36 (03) : 330 - 341
  • [22] THE CALCULUS OF FRACTAL INTERPOLATION FUNCTIONS
    BARNSLEY, MF
    HARRINGTON, AN
    [J]. JOURNAL OF APPROXIMATION THEORY, 1989, 57 (01) : 14 - 34
  • [23] MULTIVARIATE AFFINE FRACTAL INTERPOLATION
    Navascues, M. A.
    Katiyar, S. K.
    Chand, A. K. B.
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2020, 28 (07)
  • [24] Linear fractal shape interpolation
    Burch, B
    Hart, JC
    [J]. GRAPHICS INTERFACE '97 - PROCEEDINGS, 1997, : 155 - 162
  • [25] Fractal interpolation on the Sierpinski Gasket
    Celik, Derya
    Kocak, Sahin
    Ozdemir, Yunus
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 337 (01) : 343 - 347
  • [26] On a Class of Fractal Interpolation Functions
    Qian Xiaoyuan (Inst. of Math. Scis.
    [J]. Journal of Mathematical Research with Applications, 1997, (02) : 46 - 47
  • [27] Fractal interpolation of images and volumes
    Price, JR
    Hayes, MH
    [J]. CONFERENCE RECORD OF THE THIRTY-SECOND ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, VOLS 1 AND 2, 1998, : 1698 - 1702
  • [28] Estimating fractal dimension with fractal interpolation function models
    Penn, AI
    Loew, MH
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 1997, 16 (06) : 930 - 937
  • [29] Fractal interpolation: a sequential approach
    Vijender, N.
    Navascues, M. A.
    [J]. APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2021, 36 (03): : 330 - 341
  • [30] Box-counting dimensions of fractal interpolation surfaces derived from fractal interpolation functions
    Feng, Zhigang
    Sun, Xiuqing
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 412 (01) : 416 - 425