Positive semidefinite zero forcing

被引:26
|
作者
Ekstrand, Jason [1 ]
Erickson, Craig [1 ]
Hall, H. Tracy [2 ]
Hay, Diana [1 ]
Hogben, Leslie [1 ,3 ]
Johnson, Ryan [1 ]
Kingsley, Nicole [1 ]
Osborne, Steven [1 ]
Peters, Travis [1 ]
Roat, Jolie [1 ]
Ross, Arianne [1 ]
Row, Darren D. [4 ]
Warnberg, Nathan [1 ]
Young, Michael [1 ]
机构
[1] Iowa State Univ, Dept Math, Ames, IA 50011 USA
[2] Brigham Young Univ, Dept Math, Provo, UT 84602 USA
[3] Amer Inst Math, Palo Alto, CA 94306 USA
[4] Upper Iowa Univ, Sch Sci & Math, Fayette, IA 52142 USA
基金
美国国家科学基金会;
关键词
Zero forcing number; Maximum nullity; Minimum rank; Positive semidefinite; Matrix; Graph; MINIMUM-RANK; MATRICES; NULLITY; GRAPHS;
D O I
10.1016/j.laa.2013.05.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The positive semidefinite zero forcing number Z(+)(G) of a graph G was introduced in Barioli et al. (2010) [4]. We establish a variety of properties of Z(+)(G): Any vertex of G can be in a minimum positive semidefinite zero forcing set (this is not true for standard zero forcing). The graph parameters tw(G) (tree-width), Z(+)(G), and Z(G) (standard zero forcing number) all satisfy the Graph Complement Conjecture (see Barioli et al. (2012) [3]). Graphs having extreme values of the positive semidefinite zero forcing number are characterized. The effect of various graph operations on positive semidefinite zero forcing number and connections with other graph parameters are studied. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:1862 / 1874
页数:13
相关论文
共 50 条
  • [41] Fuzzification of Zero Forcing Process
    Borzooei, R. A.
    Hoseini, B. Sheikh
    Golmohammadian, M.
    Montazeri, Z.
    Takallo, M. Mohseni
    NEW MATHEMATICS AND NATURAL COMPUTATION, 2020, 16 (01) : 195 - 210
  • [42] The zero forcing polynomial of a graph
    Boyer, Kirk
    Brimkov, Boris
    English, Sean
    Ferrero, Daniela
    Keller, Ariel
    Kirsch, Rachel
    Phillips, Michael
    Reinhart, Carolyn
    DISCRETE APPLIED MATHEMATICS, 2019, 258 : 35 - 48
  • [43] A NOTE ON VARIANTS OF ZERO FORCING
    Mitchell, Lon
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2019, 35 : 468 - 472
  • [44] Zero forcing for sign patterns
    Goldberg, Felix
    Berman, Abraham
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 447 : 56 - 67
  • [45] On the complexity of failed zero forcing
    Shitov, Yaroslav
    THEORETICAL COMPUTER SCIENCE, 2017, 660 : 102 - 104
  • [46] The Zero Forcing Span of a Graph
    Jacob, Bonnie
    COMBINATORICS, GRAPH THEORY AND COMPUTING, SEICCGTC 2021, 2024, 448 : 255 - 267
  • [47] On the Zero Forcing Number of Trees
    Oboudi, Mohammad Reza
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2021, 45 (03): : 1065 - 1070
  • [48] Throttling for zero forcing and variants
    Carlson, Joshua
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2019, 75 : 96 - 112
  • [49] Zero forcing with random sets
    Curtis, Bryan
    Gan, Luyining
    Haddock, Jamie
    Lawrence, Rachel
    Spiro, Sam
    DISCRETE MATHEMATICS, 2024, 347 (05)
  • [50] THE ZERO FORCING NUMBER OF GRAPHS
    Kalinowski, Thomas
    Kamcev, Nina
    Sudakov, Benny
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2019, 33 (01) : 95 - 115