Positive semidefinite zero forcing

被引:26
|
作者
Ekstrand, Jason [1 ]
Erickson, Craig [1 ]
Hall, H. Tracy [2 ]
Hay, Diana [1 ]
Hogben, Leslie [1 ,3 ]
Johnson, Ryan [1 ]
Kingsley, Nicole [1 ]
Osborne, Steven [1 ]
Peters, Travis [1 ]
Roat, Jolie [1 ]
Ross, Arianne [1 ]
Row, Darren D. [4 ]
Warnberg, Nathan [1 ]
Young, Michael [1 ]
机构
[1] Iowa State Univ, Dept Math, Ames, IA 50011 USA
[2] Brigham Young Univ, Dept Math, Provo, UT 84602 USA
[3] Amer Inst Math, Palo Alto, CA 94306 USA
[4] Upper Iowa Univ, Sch Sci & Math, Fayette, IA 52142 USA
基金
美国国家科学基金会;
关键词
Zero forcing number; Maximum nullity; Minimum rank; Positive semidefinite; Matrix; Graph; MINIMUM-RANK; MATRICES; NULLITY; GRAPHS;
D O I
10.1016/j.laa.2013.05.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The positive semidefinite zero forcing number Z(+)(G) of a graph G was introduced in Barioli et al. (2010) [4]. We establish a variety of properties of Z(+)(G): Any vertex of G can be in a minimum positive semidefinite zero forcing set (this is not true for standard zero forcing). The graph parameters tw(G) (tree-width), Z(+)(G), and Z(G) (standard zero forcing number) all satisfy the Graph Complement Conjecture (see Barioli et al. (2012) [3]). Graphs having extreme values of the positive semidefinite zero forcing number are characterized. The effect of various graph operations on positive semidefinite zero forcing number and connections with other graph parameters are studied. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:1862 / 1874
页数:13
相关论文
共 50 条
  • [31] Algorithms for positive semidefinite factorization
    Vandaele, Arnaud
    Glineur, Francois
    Gillis, Nicolas
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2018, 71 (01) : 193 - 219
  • [32] CHARACTERIZATION OF A POSITIVE SEMIDEFINITE MATRIX
    FAREBROTHER, RW
    ECONOMETRIC THEORY, 1993, 9 (02) : 323 - 324
  • [33] POSITIVE SEMIDEFINITE BIQUADRATIC FORMS
    CHOI, MD
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1975, 12 (02) : 95 - 100
  • [34] ON THE CONE OF POSITIVE SEMIDEFINITE MATRICES
    HILL, RD
    WATERS, SR
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1987, 90 : 81 - 88
  • [35] Completely positive semidefinite rank
    Anupam Prakash
    Jamie Sikora
    Antonios Varvitsiotis
    Zhaohui Wei
    Mathematical Programming, 2018, 171 : 397 - 431
  • [36] POSITIVE SEMIDEFINITE PATTERN DECOMPOSITIONS
    HERSHKOWITZ, D
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1990, 11 (04) : 612 - 619
  • [37] PSEUDOINVERSES OF POSITIVE SEMIDEFINITE MATRICES
    LEWIS, TO
    NEWMAN, TG
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1968, 16 (04) : 701 - +
  • [38] Completely positive semidefinite rank
    Prakash, Anupam
    Sikora, Jamie
    Varvitsiotis, Antonios
    Wei, Zhaohui
    MATHEMATICAL PROGRAMMING, 2018, 171 (1-2) : 397 - 431
  • [39] Symmetries of the positive semidefinite cone
    Borcea, Ciprian S.
    FORUM MATHEMATICUM, 2014, 26 (04) : 983 - 986
  • [40] TOTAL FORCING SETS AND ZERO FORCING SETS IN TREES
    Davila, Randy
    Henning, Michael A.
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2020, 40 (03) : 733 - 754