Positive semidefinite zero forcing

被引:26
|
作者
Ekstrand, Jason [1 ]
Erickson, Craig [1 ]
Hall, H. Tracy [2 ]
Hay, Diana [1 ]
Hogben, Leslie [1 ,3 ]
Johnson, Ryan [1 ]
Kingsley, Nicole [1 ]
Osborne, Steven [1 ]
Peters, Travis [1 ]
Roat, Jolie [1 ]
Ross, Arianne [1 ]
Row, Darren D. [4 ]
Warnberg, Nathan [1 ]
Young, Michael [1 ]
机构
[1] Iowa State Univ, Dept Math, Ames, IA 50011 USA
[2] Brigham Young Univ, Dept Math, Provo, UT 84602 USA
[3] Amer Inst Math, Palo Alto, CA 94306 USA
[4] Upper Iowa Univ, Sch Sci & Math, Fayette, IA 52142 USA
基金
美国国家科学基金会;
关键词
Zero forcing number; Maximum nullity; Minimum rank; Positive semidefinite; Matrix; Graph; MINIMUM-RANK; MATRICES; NULLITY; GRAPHS;
D O I
10.1016/j.laa.2013.05.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The positive semidefinite zero forcing number Z(+)(G) of a graph G was introduced in Barioli et al. (2010) [4]. We establish a variety of properties of Z(+)(G): Any vertex of G can be in a minimum positive semidefinite zero forcing set (this is not true for standard zero forcing). The graph parameters tw(G) (tree-width), Z(+)(G), and Z(G) (standard zero forcing number) all satisfy the Graph Complement Conjecture (see Barioli et al. (2012) [3]). Graphs having extreme values of the positive semidefinite zero forcing number are characterized. The effect of various graph operations on positive semidefinite zero forcing number and connections with other graph parameters are studied. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:1862 / 1874
页数:13
相关论文
共 50 条
  • [1] The complexity of the positive semidefinite zero forcing
    Fallat, Shaun
    Meagher, Karen
    Yang, Boting
    Yang, Boting (boting.yang@uregina.ca), 1600, Springer Verlag (8881): : 681 - 693
  • [2] The Complexity of the Positive Semidefinite Zero Forcing
    Fallat, Shaun
    Meagher, Karen
    Yang, Boting
    COMBINATORIAL OPTIMIZATION AND APPLICATIONS (COCOA 2014), 2014, 8881 : 681 - 693
  • [3] On the complexity of the positive semidefinite zero forcing number
    Fallat, Shaun
    Meagher, Karen
    Yang, Boting
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 491 : 101 - 122
  • [4] Lower bounds for positive semidefinite zero forcing and their applications
    Boting Yang
    Journal of Combinatorial Optimization, 2017, 33 : 81 - 105
  • [5] POSITIVE SEMIDEFINITE MAXIMUM NULLITY AND ZERO FORCING NUMBER
    Peters, Travis
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2012, 23 : 815 - 830
  • [6] An integer program for positive semidefinite zero forcing in graphs
    Smith, Logan A.
    Mikesell, Derek J.
    Hicks, Illya V.
    NETWORKS, 2020, 76 (03) : 366 - 380
  • [7] GRAPHS OF UNITARY MATRICES AND POSITIVE SEMIDEFINITE ZERO FORCING
    Larson, Craig
    Lins, Brian
    Mitchell, Lon
    REPORTS ON MATHEMATICAL PHYSICS, 2013, 72 (03) : 311 - 320
  • [8] Lower bounds for positive semidefinite zero forcing and their applications
    Yang, Boting
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2017, 33 (01) : 81 - 105
  • [9] Proper colorings from positive semidefinite zero forcing sets
    Mitchell, Lon
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2016, 19 (02): : 301 - 304
  • [10] Positive semidefinite zero forcing numbers of two classes of graphs
    Wang, Lusheng
    Yang, Boting
    THEORETICAL COMPUTER SCIENCE, 2019, 786 : 44 - 54