PARITY VERTEX COLORINGS OF BINOMIAL TREES

被引:4
|
作者
Gregor, Petr [1 ]
Skrekovski, Riste [2 ]
机构
[1] Charles Univ Prague, Dept Theoret Comp Sci & Math Log, Malostranske Nam 25, CR-11800 Prague, Czech Republic
[2] Univ Ljubljana, Dept Math, Ljubljana 1000, Slovenia
关键词
binomial tree; parity coloring; vertex ranking;
D O I
10.7151/dmgt.1595
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show for every k >= 1 that the binomial tree of order 3k has a vertex-coloring with 2k + 1 colors such that every path contains some color odd number of times. This disproves a conjecture from [1] asserting that for every tree T the minimal number of colors in a such coloring of T is at least the vertex ranking number of T minus one.
引用
收藏
页码:177 / 180
页数:4
相关论文
共 50 条
  • [21] VERTEX COLORINGS WITHOUT RAINBOW SUBGRAPHS
    Goddard, Wayne
    Xu, Honghai
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2016, 36 (04) : 989 - 1005
  • [22] Set vertex colorings and joins of graphs
    Futaba Okamoto
    Craig W. Rasmussen
    Ping Zhang
    Czechoslovak Mathematical Journal, 2009, 59 : 929 - 941
  • [23] Set vertex colorings and joins of graphs
    Okamoto, Futaba
    Rasmussen, Craig W.
    Zhang, Ping
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2009, 59 (04) : 929 - 941
  • [24] A NOTE ON VERTEX COLORINGS OF PLANE GRAPHS
    Fabrici, Igor
    Harant, Jochen
    Jendrol', Stanislav
    Sotak, Roman
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2014, 34 (04) : 849 - 855
  • [25] Trees in greedy colorings of hypergraphs
    Gyarfas, Andras
    Lehel, Jeno
    DISCRETE MATHEMATICS, 2011, 311 (2-3) : 208 - 209
  • [26] Hyperbolic Tessellation and Colorings of Trees
    Kim, Dong Han
    Lim, Seonhee
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [27] Acyclic colorings of products of trees
    Jamison, Robert E.
    Matthews, Gretchen L.
    Villalpando, John
    INFORMATION PROCESSING LETTERS, 2006, 99 (01) : 7 - 12
  • [28] RECOGNIZABLE COLORINGS OF CYCLES AND TREES
    Dorfling, Michael J.
    Dorfling, Samantha
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2012, 32 (01) : 81 - 90
  • [29] Cost total colorings of trees
    Isobe, S
    Zhou, X
    Nishizeki, T
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2004, E87D (02) : 337 - 342
  • [30] A note on edge colorings and trees
    Jarden, Adi
    Shami, Ziv
    MATHEMATICAL LOGIC QUARTERLY, 2022, 68 (04) : 447 - 457