Hyperbolic Tessellation and Colorings of Trees

被引:2
|
作者
Kim, Dong Han [1 ]
Lim, Seonhee [2 ]
机构
[1] Dongguk Univ Seoul, Dept Math Educ, Seoul 100715, South Korea
[2] Seoul Natl Univ, Dept Math Sci, Seoul 151747, South Korea
关键词
D O I
10.1155/2013/706496
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study colorings of a tree induced from isometries of the hyperbolic plane given an ideal tessellation. We show that, for a given tessellation of the hyperbolic plane by ideal polygons, a coloring can be associated with any element of Isom(H-2), and the element is a commensurator of G if and only if its associated coloring is periodic, generalizing a result of Hedlund and Morse.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Gromov hyperbolic tessellation graphs
    Portilla, A.
    Rodriguez, Jose M.
    Sigarreta, Jos M.
    Vilaire, J. M.
    [J]. UTILITAS MATHEMATICA, 2015, 97 : 193 - 211
  • [2] The Delaunay tessellation in hyperbolic space
    Deblois, Jason
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2018, 164 (01) : 15 - 46
  • [3] RECONSTRUCTION FOR COLORINGS ON TREES
    Bhatnagar, Nayantara
    Vera, Juan
    Vigoda, Eric
    Weitz, Dror
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2011, 25 (02) : 809 - 826
  • [4] On Hamiltonian Colorings of Trees
    Bantva, Devsi
    [J]. ALGORITHMS AND DISCRETE APPLIED MATHEMATICS, CALDAM 2016, 2016, 9602 : 49 - 60
  • [5] ON THE DOMINATOR COLORINGS IN TREES
    Merouane, Houcine Boumediene
    Chellali, Mustapha
    [J]. DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2012, 32 (04) : 677 - 683
  • [6] Nonrepetitive colorings of trees
    Bresar, B.
    Grytczuk, J.
    Klavzar, S.
    Niwczyk, S.
    Peterin, I.
    [J]. DISCRETE MATHEMATICS, 2007, 307 (02) : 163 - 172
  • [7] Trees in greedy colorings of hypergraphs
    Gyarfas, Andras
    Lehel, Jeno
    [J]. DISCRETE MATHEMATICS, 2011, 311 (2-3) : 208 - 209
  • [8] Acyclic colorings of products of trees
    Jamison, Robert E.
    Matthews, Gretchen L.
    Villalpando, John
    [J]. INFORMATION PROCESSING LETTERS, 2006, 99 (01) : 7 - 12
  • [9] RECOGNIZABLE COLORINGS OF CYCLES AND TREES
    Dorfling, Michael J.
    Dorfling, Samantha
    [J]. DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2012, 32 (01) : 81 - 90
  • [10] Cost total colorings of trees
    Isobe, S
    Zhou, X
    Nishizeki, T
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2004, E87D (02) : 337 - 342