Hyperbolic Tessellation and Colorings of Trees

被引:2
|
作者
Kim, Dong Han [1 ]
Lim, Seonhee [2 ]
机构
[1] Dongguk Univ Seoul, Dept Math Educ, Seoul 100715, South Korea
[2] Seoul Natl Univ, Dept Math Sci, Seoul 151747, South Korea
关键词
D O I
10.1155/2013/706496
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study colorings of a tree induced from isometries of the hyperbolic plane given an ideal tessellation. We show that, for a given tessellation of the hyperbolic plane by ideal polygons, a coloring can be associated with any element of Isom(H-2), and the element is a commensurator of G if and only if its associated coloring is periodic, generalizing a result of Hedlund and Morse.
引用
下载
收藏
页数:6
相关论文
共 50 条
  • [41] Counting H-colorings of partial k-trees
    Díaz, J
    Serna, M
    Thilikos, DM
    COMPUTING AND COMBINATORICS, 2001, 2108 : 298 - 307
  • [42] Strong Spatial Mixing for Colorings on Trees and its Algorithmic Applications
    Chen, Zongchen
    Liu, Kuikui
    Mani, Nitya
    Moitra, Ankur
    2023 IEEE 64TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, FOCS, 2023, : 810 - 845
  • [43] Generalized vertex-colorings of partial k-trees
    Zhou, X
    Kanari, Y
    Nishizeki, T
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2000, E83A (04) : 671 - 678
  • [44] On the Number of Heterochromatic Trees in Nice and Beautiful Colorings of Complete Graphs
    Montellano-Ballesteros, Juan Jose
    Rivera-Campo, Eduardo
    Strausz, Ricardo
    GRAPHS AND COMBINATORICS, 2022, 38 (01)
  • [45] Edge-colorings of complete graphs that avoid polychromatic trees
    Jiang, T
    West, DB
    DISCRETE MATHEMATICS, 2004, 274 (1-3) : 137 - 145
  • [46] Counting H-colorings of partial k-trees
    Díaz, J
    Serna, M
    Thilikos, DM
    THEORETICAL COMPUTER SCIENCE, 2002, 281 (1-2) : 291 - 309
  • [47] On the Number of Heterochromatic Trees in Nice and Beautiful Colorings of Complete Graphs
    Juan José Montellano-Ballesteros
    Eduardo Rivera-Campo
    Ricardo Strausz
    Graphs and Combinatorics, 2022, 38
  • [48] Fast mixing for independent sets, colorings, and other models on trees
    Martinelli, Fabio
    Sinclair, Alistair
    Weitz, Dror
    RANDOM STRUCTURES & ALGORITHMS, 2007, 31 (02) : 134 - 172
  • [49] Homomorphisms of partial t-trees and edge-colorings of partial 3-trees
    Chen, Meirun
    Naserasr, Reza
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2020, 145 : 1 - 31
  • [50] Glauber dynamics on trees and hyperbolic graphs
    Kenyon, C
    Mossel, E
    Peres, Y
    42ND ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2001, : 568 - 578