Local well-posedness for the periodic higher order KdV type equations

被引:24
|
作者
Hirayama, Hiroyuki [1 ]
机构
[1] Nagoya Univ, Grad Sch Math, Chikusa Ku, Nagoya, Aichi 4648602, Japan
关键词
KdV equation; Well-posedness; Cauchy problem; Fourier restriction norm; KORTEWEG-DEVRIES EQUATION; DE-VRIES EQUATION; CAUCHY-PROBLEM; KAWAHARA EQUATION; GLOBAL EXISTENCE; SOBOLEV SPACES;
D O I
10.1007/s00030-011-0147-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Higher order KdV type equations are the equation replaced by a higher order derivative for the KdV equation. Recently, the local well-posedness result for these equations on torus have been given by Gorsky and Himonas (Math. Comput. Simul. 80:173-183, 2009). We extend this result by improving a bilinear estimate used in the Fourier restriction norm method.
引用
下载
收藏
页码:677 / 693
页数:17
相关论文
共 50 条
  • [41] Well-Posedness Results and Dissipative Limit of High Dimensional KdV-Type Equations
    Carvajal, Xavier
    Esfahani, Amin
    Panthee, Mahendra
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2017, 48 (04): : 505 - 550
  • [42] Well-Posedness Results and Dissipative Limit of High Dimensional KdV-Type Equations
    Xavier Carvajal
    Amin Esfahani
    Mahendra Panthee
    Bulletin of the Brazilian Mathematical Society, New Series, 2017, 48 : 505 - 550
  • [43] An improved local well-posedness result for the modified KdV equation
    Grünrock, A
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2004, 2004 (61) : 3287 - 3308
  • [44] Well-posedness for parabolic equations of arbitrary order
    Marchi, C
    ASYMPTOTIC ANALYSIS, 2003, 35 (01) : 41 - 64
  • [45] Local well-posedness for the homogeneous Euler equations
    Zhong, Xin
    Wu, Xing-Ping
    Tang, Chun-Lei
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (11) : 3829 - 3848
  • [46] LOCAL WELL-POSEDNESS OF NONLOCAL BURGERS EQUATIONS
    Benzoni-Gavage, Sylvie
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2009, 22 (3-4) : 303 - 320
  • [47] ON THE SOLVABILITY AND WELL-POSEDNESS OF INITIAL PROBLEMS FOR NONLINEAR HYPERBOLIC EQUATIONS OF HIGHER ORDER
    Grigolia, M.
    MEMOIRS ON DIFFERENTIAL EQUATIONS AND MATHEMATICAL PHYSICS, 2005, 35 : 37 - 54
  • [48] GLOBAL WELL-POSEDNESS OF NLS-KDV SYSTEMS FOR PERIODIC FUNCTIONS
    Matheus, Carlos
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2007,
  • [49] Local Well-posedness for Semilinear Heat Equations on H type Groups
    Oka, Yasuyuki
    TAIWANESE JOURNAL OF MATHEMATICS, 2018, 22 (05): : 1091 - 1105
  • [50] On Unconditional Well-Posedness of Modified KdV
    Kwon, Soonsik
    Oh, Tadahiro
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2012, 2012 (15) : 3509 - 3534