Local well-posedness for the periodic higher order KdV type equations

被引:24
|
作者
Hirayama, Hiroyuki [1 ]
机构
[1] Nagoya Univ, Grad Sch Math, Chikusa Ku, Nagoya, Aichi 4648602, Japan
关键词
KdV equation; Well-posedness; Cauchy problem; Fourier restriction norm; KORTEWEG-DEVRIES EQUATION; DE-VRIES EQUATION; CAUCHY-PROBLEM; KAWAHARA EQUATION; GLOBAL EXISTENCE; SOBOLEV SPACES;
D O I
10.1007/s00030-011-0147-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Higher order KdV type equations are the equation replaced by a higher order derivative for the KdV equation. Recently, the local well-posedness result for these equations on torus have been given by Gorsky and Himonas (Math. Comput. Simul. 80:173-183, 2009). We extend this result by improving a bilinear estimate used in the Fourier restriction norm method.
引用
下载
收藏
页码:677 / 693
页数:17
相关论文
共 50 条