Magnonic band structure investigation of one-dimensional bi-component magnonic crystal waveguides

被引:16
|
作者
Ma, Fu Sheng [1 ]
Lim, Hock Siah [1 ]
Zhang, Vanessa Li [1 ]
Ng, Ser Choon [1 ]
Kuok, Meng Hau [1 ]
机构
[1] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore
来源
关键词
Magnonic crystal; Magnonics; Spin wave; Bandgap; Micromagnetic simulations; NANOIMPRINT LITHOGRAPHY;
D O I
10.1186/1556-276X-7-498
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The magnonic band structures for exchange spin waves propagating in one-dimensional magnonic crystal waveguides of different material combinations are investigated using micromagnetic simulations. The waveguides are periodic arrays of alternating nanostripes of different ferromagnetic materials. Our results show that the widths and center frequencies of the bandgaps are controllable by the component materials, the stripe widths, and the orientation of the applied magnetic field. One salient feature of the bandgap frequency plot against stripe width is that there are n-1 zero-width gaps for the nth bandgap for both transversely and longitudinally magnetized waveguides. Additionally, the largest bandgap widths are primarily dependent on the exchange constant contrast between the component materials of the nanostructured waveguides.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] One-dimensional magnonic circuits with size-tunable band gaps and selective transmission
    Djafari-Rouhani, B.
    A-Wahsh, H.
    Akjouj, A.
    Dobrzynski, L.
    JOINT EUROPEAN MAGNETIC SYMPOSIA (JEMS), 2011, 303
  • [42] Magnetostatic surface wave propagation in a one-dimensional magnonic crystal with broken translational symmetry
    Filimonov, Y.
    Pavlov, E.
    Vystostkii, S.
    Nikitov, S.
    APPLIED PHYSICS LETTERS, 2012, 101 (24)
  • [43] Soliton solution for the Landau-Lifshitz equation of a one-dimensional bicomponent magnonic crystal
    Giridharan, D.
    Sabareesan, P.
    Daniel, M.
    PHYSICAL REVIEW E, 2016, 94 (03)
  • [44] Phase control of spin waves based on a magnetic defect in a one-dimensional magnonic crystal
    Baumgaertl, Korbinian
    Watanabe, Sho
    Grundler, Dirk
    APPLIED PHYSICS LETTERS, 2018, 112 (14)
  • [45] Band Diagram of SpinWaves in a Two-Dimensional Magnonic Crystal
    Tacchi, S.
    Montoncello, F.
    Madami, M.
    Gubbiotti, G.
    Carlotti, G.
    Giovannini, L.
    Zivieri, R.
    Nizzoli, F.
    Jain, S.
    Adeyeye, A. O.
    Singh, N.
    PHYSICAL REVIEW LETTERS, 2011, 107 (12)
  • [46] Field-controlled rotation of spin-wave nanochannels in bi-component magnonic crystals
    Duerr, G.
    Tacchi, S.
    Gubbiotti, G.
    Grundler, D.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2014, 47 (32)
  • [47] Metamaterial Properties of One-Dimensional and Two-Dimensional Magnonic Crystals
    Zivieri, Roberto
    SOLID STATE PHYSICS, VOL 63, 2012, 63 : 151 - +
  • [48] Fractal spectra in generalized Fibonacci one-dimensional magnonic quasicrystals
    Costa, C. H. O.
    Vasconcelos, M. S.
    Barbosa, P. H. R.
    Barbosa Filho, F. F.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2012, 324 (14) : 2315 - 2323
  • [49] Perfect transmission of spin waves in a one-dimensional magnonic quasicrystal
    Hsueh, W. J.
    Chen, C. H.
    Qiu, R. Z.
    PHYSICS LETTERS A, 2013, 377 (19-20) : 1378 - 1385
  • [50] Band gaps and transmission spectra in generalized Fibonacci σ(p, q) one-dimensional magnonic quasicrystals
    Costa, C. H. O.
    Vasconcelos, M. S.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2013, 25 (28)