Magnonic band structure investigation of one-dimensional bi-component magnonic crystal waveguides

被引:16
|
作者
Ma, Fu Sheng [1 ]
Lim, Hock Siah [1 ]
Zhang, Vanessa Li [1 ]
Ng, Ser Choon [1 ]
Kuok, Meng Hau [1 ]
机构
[1] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore
来源
关键词
Magnonic crystal; Magnonics; Spin wave; Bandgap; Micromagnetic simulations; NANOIMPRINT LITHOGRAPHY;
D O I
10.1186/1556-276X-7-498
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The magnonic band structures for exchange spin waves propagating in one-dimensional magnonic crystal waveguides of different material combinations are investigated using micromagnetic simulations. The waveguides are periodic arrays of alternating nanostripes of different ferromagnetic materials. Our results show that the widths and center frequencies of the bandgaps are controllable by the component materials, the stripe widths, and the orientation of the applied magnetic field. One salient feature of the bandgap frequency plot against stripe width is that there are n-1 zero-width gaps for the nth bandgap for both transversely and longitudinally magnetized waveguides. Additionally, the largest bandgap widths are primarily dependent on the exchange constant contrast between the component materials of the nanostructured waveguides.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Observation of dual magnonic and phononic bandgaps in bi-component nanostructured crystals
    Zhang, V. L.
    Ma, F. S.
    Pan, H. H.
    Lin, C. S.
    Lim, H. S.
    Ng, S. C.
    Kuok, M. H.
    Jain, S.
    Adeyeye, A. O.
    APPLIED PHYSICS LETTERS, 2012, 100 (16)
  • [22] Three-channel demultiplexer based on one-dimensional magnonic crystal waveguides using defect modes
    Ahmadzadeh, Fatemeh
    Bahrami, Ali
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2025, 58 (05)
  • [23] Band gap parameters of one-dimensional bicomponent nanostructured magnonic crystals
    Lin, C. S.
    Lim, H. S.
    Wang, Z. K.
    Ng, S. C.
    Kuok, M. H.
    APPLIED PHYSICS LETTERS, 2011, 98 (02)
  • [24] Magnon valve effect and resonant transmission in a one-dimensional magnonic crystal
    Xing, Y. W.
    Yan, Z. R.
    Han, X. F.
    PHYSICAL REVIEW B, 2021, 103 (05)
  • [25] Tuning the band structures of a one-dimensional width-modulated magnonic crystal by a transverse magnetic field
    Di, K.
    Lim, H. S.
    Zhang, V. L.
    Ng, S. C.
    Kuok, M. H.
    Nguyen, H. T.
    Cottam, M. G.
    JOURNAL OF APPLIED PHYSICS, 2014, 115 (05)
  • [26] Large magnonic band gaps and defect modes in one-dimensional comblike structures
    Al-Wahsh, H
    Akjouj, A
    Djafari-Rouhani, B
    Vasseur, JO
    Dobrzynski, L
    Deymier, PA
    PHYSICAL REVIEW B, 1999, 59 (13): : 8709 - 8719
  • [27] Electrical detection of magnonic band gaps for metallic one-dimensional magnetic crystals
    Shibata, Koji
    Kasahara, Kenji
    Manago, Takashi
    APPLIED PHYSICS EXPRESS, 2019, 12 (05)
  • [28] Band gaps in the terahertz frequency range in quasiperiodic one-dimensional magnonic crystals
    Costa, C. H. O.
    Barbosa, P. H. R.
    Barbosa Filho, F. F.
    Vasconcelos, M. S.
    Albuquerque, E. L.
    SOLID STATE COMMUNICATIONS, 2010, 150 (47-48) : 2325 - 2328
  • [29] Magnonic band gaps in YIG-based one-dimensional magnonic crystals: An array of grooves versus an array of metallic stripes
    Bessonov, V. D.
    Mruczkiewicz, M.
    Gieniusz, R.
    Guzowska, U.
    Maziewski, A.
    Stognij, A. I.
    Krawczyk, M.
    PHYSICAL REVIEW B, 2015, 91 (10)
  • [30] Ferromagnetic and antiferromagnetic spin-wave dispersions in a dipole-exchange coupled bi-component magnonic crystal
    Zhang, V. L.
    Lim, H. S.
    Lin, C. S.
    Wang, Z. K.
    Ng, S. C.
    Kuok, M. H.
    Jain, S.
    Adeyeye, A. O.
    Cottam, M. G.
    APPLIED PHYSICS LETTERS, 2011, 99 (14)