Morphology evolution in strain-compensated multiple quantum well structures

被引:5
|
作者
Ledentsov, N. N. [1 ,2 ]
Shchukin, V. A. [1 ,2 ]
Rouvimov, S. [3 ]
机构
[1] VI Systems GmbH, D-10623 Berlin, Germany
[2] Russian Acad Sci, AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia
[3] Univ Notre Dame, South Bend, IN 46556 USA
关键词
VERTICAL FAR-FIELDS; BEAM DIVERGENCE; DIODE-LASERS; SUPERLATTICES; STRESSES; GROWTH;
D O I
10.1063/1.4862436
中图分类号
O59 [应用物理学];
学科分类号
摘要
Morphology evolution in (In,Ga)As-Ga(As,P) strain-compensated multilayer structures is studied. The effects of nanoscale interface corrugation and phase separation are evident after the third period of the multilayer structure and become more pronounced with each new stack until the sixth period. Then, the interface stabilizes pointing to the formation of strain-balanced equilibrium interface structure. The epitaxial structure remains defect-free up to the maximum number (twenty) of periods studied. In a structure with a high lattice mismatch between the neighboring layers, In0.40Ga0.60As/GaAs0.85P0.15, clusters of dislocations are revealed already in the third period. The observed phenomena are critical for proper engineering of optoelectronic devices. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Enhanced optical performances of strain-compensated 1.3-μm GaInNAs/GaNAs/GaAs quantum-well structures
    Pavelescu, EM
    Jouhti, T
    Peng, CS
    Li, W
    Konttinen, J
    Dumitrescu, M
    Laukkanen, P
    Pessa, M
    JOURNAL OF CRYSTAL GROWTH, 2002, 241 (1-2) : 31 - 38
  • [32] Effects of distance between wells on band structure and characteristics of InGaAs/InGaAsP strain-compensated multiple quantum well lasers
    Ma, CS
    Wang, LJ
    Liu, SY
    SOLID-STATE ELECTRONICS, 2000, 44 (12) : 2123 - 2129
  • [33] High-speed modulation of strain-compensated InGaAs-GaAsP-InGaP multiple-quantum-well lasers
    Han, H
    Freeman, PN
    Hobson, WS
    Dutta, NK
    Lopata, J
    Wynn, JD
    Chu, SNG
    IEEE PHOTONICS TECHNOLOGY LETTERS, 1996, 8 (09) : 1133 - 1135
  • [34] Strain-Compensated InGaAs Terahertz Quantum Cascade Lasers
    Ohtani, Keita
    Beck, Mattias
    Faist, Jerome
    ACS PHOTONICS, 2016, 3 (12): : 2297 - 2302
  • [35] Gain measurements in strain-compensated quantum cascade laser
    Gresch, Tobias
    Faist, Jerome
    Giovannini, Marcella
    APPLIED PHYSICS LETTERS, 2009, 94 (16)
  • [36] Growth and characterization of strain-compensated InAsP/GaInP and InGaAs/GaInP multiple quantum wells
    Tu, CW
    Mei, XB
    Yan, CH
    Bi, WG
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 1995, 35 (1-3): : 166 - 170
  • [37] Growth of InGaAs/GaAsP Strain-compensated Multiple Quantum Wells via MOCVD Technology
    Wang X.
    Wang H.-Z.
    Zhang B.
    Wang Q.-H.
    Fan J.
    Zou Y.-G.
    Ma X.-H.
    Faguang Xuebao/Chinese Journal of Luminescence, 2021, 42 (04): : 448 - 454
  • [38] Strain-compensated InGaAs/AlGaAsP quantum well intersubband photodetectors for mid-IR wavelengths
    Bacher, K
    Liu, WK
    Wu, Y
    Stewart, T
    PHOTODETECTORS: MATERIALS AND DEVICES III, 1998, 3287 : 80 - 87
  • [39] The effect of inserting strain-compensated GaNAs layers on the luminescence properties of GaInNAs/GaAs quantum well
    Bian, LF
    Jiang, DS
    Lu, SL
    Huang, JS
    Chang, K
    Li, LH
    Harmand, JC
    JOURNAL OF CRYSTAL GROWTH, 2003, 250 (3-4) : 339 - 344
  • [40] Strain-compensated InGaAs/InGaAs quantum well cell with 2μm band-edge
    Rohr, C
    Abbott, P
    Ballard, I
    Connolly, JP
    Barnham, KWJ
    Nasi, L
    Ferrari, C
    Lazzarini, L
    Mazzer, M
    Roberts, J
    THERMOPHOTOVOLTAIC GENERATION OF ELECTRICITY, 2003, 653 : 344 - 353