Gromov Hyperbolicity of Regular Graphs

被引:0
|
作者
Carlos Hernandez-Gomez, J. [1 ]
Rodriguez, Jose M. [2 ]
Sigarreta, Jose M. [1 ]
Torres-Nunez, Yadira [3 ]
Villeta, Maria [4 ]
机构
[1] Univ Autonoma Guerrero, Fac Matemat, Carlos E Adame 5, Acapulco, Guerrero, Mexico
[2] Univ Carlos III Madrid, Dept Matemat, Av Univ 30, Madrid 28911, Spain
[3] Humboldt Int Univ, Dept Matemat, 4000 West Flagler St, Miami, FL 33134 USA
[4] Univ Complutense Madrid, Fac Estudios Estadist, Dept Estadist & Invest Operat 3, Av Puerta Hierro S-N, Madrid 3, Spain
关键词
Regular graphs; Gromov hyperbolicity; Geodesics; Domination numbers; Infinite graphs; SMALL-WORLD; CONSTANT;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If X is a geodesic metric space and x(1), x(2), x(3) is an element of X, a geodesic triangle T = {x(1), x(2), x(3)} is the union of the three geodesics [x(1)x(2)], [x(2)x(3)] and [x(3)x(1)] in X. The space X is delta-hyperbolic (in the Gromov sense) if any side of T is contained in a delta-neighborhood of the union of the two other sides, for every geodesic triangle T in X. The study of hyperbolic graphs is an interesting topic since the hyperbolicity of a geodesic metric space is equivalent to the hyperbolicity of a graph related to it. Regular graphs are a very interesting class of graphs with many applications. The main aim of this paper is to obtain information about the hyperbolicity constant of regular graphs. We obtain several bounds for this parameter; in particular, we prove that delta(G) <= Delta n/(8(Delta - 1))+1 for any Delta-regular graph G with n vertices. Furthermore, we show that for each Delta >= 2 and every possible value t of the hyperbolicity constant, there exists a Delta-regular graph G with delta(G) = t. We also study the regular graphs G with delta(G) <= 1, i.e., the graphs which are like trees (in the Gromov sense). Besides, we prove some inequalities involving the hyperbolicity constant and domination numbers for regular graphs.
引用
收藏
页码:395 / 416
页数:22
相关论文
共 50 条
  • [1] Gromov Hyperbolicity in Directed Graphs
    Portilla, Ana
    Rodriguez, Jose M.
    Sigarreta, Jose M.
    Touris, Eva
    SYMMETRY-BASEL, 2020, 12 (01):
  • [2] Gromov hyperbolicity of planar graphs
    Canton, Alicia
    Granados, Ana
    Pestana, Domingo
    Rodriguez, Jose M.
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2013, 11 (10): : 1817 - 1830
  • [3] Gromov Hyperbolicity in Mycielskian Graphs
    Granados, Ana
    Pestana, Domingo
    Portilla, Ana
    Rodriguez, Jose M.
    SYMMETRY-BASEL, 2017, 9 (08):
  • [4] Knot graphs and Gromov hyperbolicity
    Stanislav Jabuka
    Beibei Liu
    Allison H. Moore
    Mathematische Zeitschrift, 2022, 301 : 811 - 834
  • [5] Knot graphs and Gromov hyperbolicity
    Jabuka, Stanislav
    Liu, Beibei
    Moore, Allison H.
    MATHEMATISCHE ZEITSCHRIFT, 2022, 301 (01) : 811 - 834
  • [6] Gromov Hyperbolicity of Periodic Graphs
    Alicia Cantón
    Ana Granados
    Domingo Pestana
    José M. Rodríguez
    Bulletin of the Malaysian Mathematical Sciences Society, 2016, 39 : 89 - 116
  • [7] Gromov Hyperbolicity of Periodic Graphs
    Canton, Alicia
    Granados, Ana
    Pestana, Domingo
    Rodriguez, Jose M.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2016, 39 : S89 - S116
  • [8] Gromov Hyperbolicity of Periodic Planar Graphs
    Alicia CANTóN
    Ana GRANADOS
    Domingo PESTANA
    José Manuel RODRíGUEZ
    Acta Mathematica Sinica,English Series, 2014, (01) : 79 - 90
  • [9] Gromov Hyperbolicity in the Cartesian Sum of Graphs
    Carballosa, W.
    de la Cruz, A.
    Rodriguez, J. M.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2018, 44 (03): : 837 - 856
  • [10] Bounds on Gromov hyperbolicity constant in graphs
    Rodriguez, Jose M.
    Sigarreta, Jose M.
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2012, 122 (01): : 53 - 65