Projective de Bruijn Sequences

被引:0
|
作者
Ohtsuka, Yuki [1 ]
Matsumoto, Makoto [1 ]
Hagita, Mariko [2 ]
机构
[1] Hiroshima Univ, Dept Mat, Hiroshima 7398526, Japan
[2] Ochanomizu Univ, Dept Info, Tokyo 1128610, Japan
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let F, denote the q-element field. A q-ary de Bruijn sequence of degree m is a cyclic sequence of elements of F-q, such that every element in F-q(m) appears exactly once as a consecutive m-tuple in the cyclic sequence. We consider its projective analogue; namely, a cyclic sequence such that every point in the projective space (F-q(m+1) - {0})/(F-q(x)) appears exactly once as a consecutive (m + 1)-tuple. We have an explicit formula (q!) q(m) - 1/q-1 q(-m) for the number of distinct such sequences.
引用
收藏
页码:167 / +
页数:3
相关论文
共 50 条
  • [31] A recursive construction of nonbinary de Bruijn sequences
    Abbas Alhakim
    Mufutau Akinwande
    Designs, Codes and Cryptography, 2011, 60 : 155 - 169
  • [32] An interleaved method for constructing de Bruijn sequences
    Zhao, Xiao-Xin
    Tian, Tian
    Qi, Wen-Feng
    DISCRETE APPLIED MATHEMATICS, 2019, 254 : 234 - 245
  • [33] Generating De Bruijn sequences: An efficient implementation
    Annexstein, FS
    IEEE TRANSACTIONS ON COMPUTERS, 1997, 46 (02) : 198 - 200
  • [34] Extending de Bruijn sequences to larger alphabets
    Becher, Veronica
    Cortes, Lucas
    INFORMATION PROCESSING LETTERS, 2021, 168
  • [35] WEIGHT CLASS DISTRIBUTIONS OF DE BRUIJN SEQUENCES
    MAYHEW, GL
    DISCRETE MATHEMATICS, 1994, 126 (1-3) : 425 - 429
  • [36] COMPLETELY UNIFORMLY DISTRIBUTED SEQUENCES BASED ON DE BRUIJN SEQUENCES
    Almansi, Emilio
    Becher, Veronica
    MATHEMATICS OF COMPUTATION, 2020, 89 (325) : 2537 - 2551
  • [37] A Simple Combinatorial Algorithm for de Bruijn Sequences
    Alhakim, Abbas M.
    AMERICAN MATHEMATICAL MONTHLY, 2010, 117 (08): : 728 - 732
  • [38] De Bruijn sequences and complexity of symmetric functions
    Rovetta, Christelle
    Mouffron, Marc
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2011, 3 (04): : 207 - 225
  • [39] De Bruijn sequences and complexity of symmetric functions
    Christelle Rovetta
    Marc Mouffron
    Cryptography and Communications, 2011, 3 : 207 - 225
  • [40] METHOD OF CONSTRUCTING DE-BRUIJN SEQUENCES
    ARAZI, B
    ELECTRONICS LETTERS, 1976, 12 (25) : 658 - 659