Projective de Bruijn Sequences

被引:0
|
作者
Ohtsuka, Yuki [1 ]
Matsumoto, Makoto [1 ]
Hagita, Mariko [2 ]
机构
[1] Hiroshima Univ, Dept Mat, Hiroshima 7398526, Japan
[2] Ochanomizu Univ, Dept Info, Tokyo 1128610, Japan
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let F, denote the q-element field. A q-ary de Bruijn sequence of degree m is a cyclic sequence of elements of F-q, such that every element in F-q(m) appears exactly once as a consecutive m-tuple in the cyclic sequence. We consider its projective analogue; namely, a cyclic sequence such that every point in the projective space (F-q(m+1) - {0})/(F-q(x)) appears exactly once as a consecutive (m + 1)-tuple. We have an explicit formula (q!) q(m) - 1/q-1 q(-m) for the number of distinct such sequences.
引用
收藏
页码:167 / +
页数:3
相关论文
共 50 条
  • [21] An Unoriented Variation on de Bruijn Sequences
    Burris, Christie S.
    Motta, Francis C.
    Shipman, Patrick D.
    GRAPHS AND COMBINATORICS, 2017, 33 (04) : 845 - 858
  • [22] On Characteristic Functions of De Bruijn Sequences
    Tang Zhenwei
    Qi Wenfeng
    Tian Tian
    CHINESE JOURNAL OF ELECTRONICS, 2016, 25 (02) : 304 - 311
  • [23] Error Correcting Sequence and Projective De Bruijn Graph
    Mariko Hagita
    Makoto Matsumoto
    Fumio Natsu
    Yuki Ohtsuka
    Graphs and Combinatorics, 2008, 24 : 185 - 194
  • [24] Error correcting sequence and projective de Bruijn graph
    Hagita, Mariko
    Matsumoto, Makoto
    Natsu, Fumio
    Ohtsuka, Yuki
    GRAPHS AND COMBINATORICS, 2008, 24 (03) : 185 - 194
  • [25] Construction of De Bruijn Sequences from l-sequences
    Li, Ming
    Jiang, Yupeng
    Lin, Dongdai
    2021 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2021, : 1522 - 1527
  • [27] Construction for de Bruijn sequences with large stage
    Dong, Junwu
    Pei, Dingyi
    DESIGNS CODES AND CRYPTOGRAPHY, 2017, 85 (02) : 343 - 358
  • [28] De Bruijn sequences, irreducible codes and cyclotomy
    Department of Informatics, University of Bergen, N-5020 Bergen, Norway
    Discrete Math, 1-3 (143-154):
  • [29] On the existence of balanced generalized de Bruijn sequences
    Baker, Matthew
    Mittal, Bhumika
    Mouli, Haran
    Tang, Eric
    DISCRETE MATHEMATICS, 2023, 346 (09)
  • [30] Extreme weight classes of de Bruijn sequences
    Mayhew, GL
    DISCRETE MATHEMATICS, 2002, 256 (1-2) : 495 - 497