Inference for longitudinal data with nonignorable nonmonotone missing responses

被引:3
|
作者
Sinha, Sanjoy K. [1 ]
Kaushal, Amit [2 ]
Xiao, Wenzhong [3 ]
机构
[1] Carleton Univ, Sch Math & Stat, Ottawa, ON K1S 5B6, Canada
[2] Stanford Genome Technol Ctr, Stanford, CA 94305 USA
[3] Harvard Univ, Sch Med, Boston, MA 02114 USA
基金
加拿大自然科学与工程研究理事会;
关键词
False discovery rate; Importance sampling; Incomplete data; Linear mixed model; Longitudinal study; Maximum likelihood; Proteomics experiment; SENSITIVITY-ANALYSIS; DATA MECHANISM; MIXED MODELS; DROP-OUT; REGRESSION; NONRESPONSE;
D O I
10.1016/j.csda.2013.10.027
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
For the analysis of longitudinal data with nonignorable and nonmonotone missing responses, a full likelihood method often requires intensive computation, especially when there are many follow-up times. The authors propose and explore a Monte Carlo method, based on importance sampling, for approximating the maximum likelihood estimators. The finite-sample properties of the proposed estimators are studied using simulations. An application of the proposed method is also provided using longitudinal data on peptide intensities obtained from a proteomics experiment of trauma patients. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:77 / 91
页数:15
相关论文
共 50 条
  • [1] DISCRETE CHOICE MODELS FOR NONMONOTONE NONIGNORABLE MISSING DATA: IDENTIFICATION AND INFERENCE
    Tchetgen, Eric J. Tchetgen
    Wang, Linbo
    Sun, BaoLuo
    [J]. STATISTICA SINICA, 2018, 28 (04) : 2069 - 2088
  • [2] Robust analysis of longitudinal data with nonignorable missing responses
    Sanjoy K. Sinha
    [J]. Metrika, 2012, 75 : 913 - 938
  • [3] Robust analysis of longitudinal data with nonignorable missing responses
    Sinha, Sanjoy K.
    [J]. METRIKA, 2012, 75 (07) : 913 - 938
  • [4] Likelihood-based inference with nonignorable missing responses and covariates in models for discrete longitudinal data
    Stubbendick, Amy L.
    Ibrahim, Joseph G.
    [J]. STATISTICA SINICA, 2006, 16 (04) : 1143 - 1167
  • [5] Analysis of longitudinal data under nonignorable nonmonotone nonresponse
    Zhao, Puying
    Wang, Lei
    Shao, Jun
    [J]. STATISTICS AND ITS INTERFACE, 2018, 11 (02) : 265 - 279
  • [6] IDENTIFICATION AND INFERENCE WITH NONIGNORABLE MISSING COVARIATE DATA
    Miao, Wang
    Tchetgen, Eric Tchetgen
    [J]. STATISTICA SINICA, 2018, 28 (04) : 2049 - 2067
  • [7] A self-censoring model for multivariate nonignorable nonmonotone missing data
    Li, Yilin
    Miao, Wang
    Shpitser, Ilya
    Tchetgen, Eric J. Tchetgen J.
    [J]. BIOMETRICS, 2023, 79 (04) : 3203 - 3214
  • [8] Nonignorable Models for Intermittently Missing Categorical Longitudinal Responses
    Tsonaka, Roula
    Rizopoulos, Dimitris
    Verbeke, Geert
    Lesaffre, Emmanuel
    [J]. BIOMETRICS, 2010, 66 (03) : 834 - 844
  • [9] SEMIPARAMETRIC ESTIMATING EQUATIONS INFERENCE WITH NONIGNORABLE MISSING DATA
    Zhao, Puying
    Tang, Niansheng
    Qu, Annie
    Jiang, Depeng
    [J]. STATISTICA SINICA, 2017, 27 (01) : 89 - 113
  • [10] A Bivariate Pseudolikelihood for Incomplete Longitudinal Binary Data with Nonignorable Nonmonotone Missingness
    Sinha, Sanjoy K.
    Troxel, Andrea B.
    Lipsitz, Stuart R.
    Sinha, Debajyoti
    Fitzmaurice, Garrett M.
    Molenberghs, Geert
    Ibrahim, Joseph G.
    [J]. BIOMETRICS, 2011, 67 (03) : 1119 - 1126