Analysis of longitudinal data under nonignorable nonmonotone nonresponse

被引:7
|
作者
Zhao, Puying [1 ]
Wang, Lei [2 ,3 ,4 ]
Shao, Jun [4 ]
机构
[1] Univ Waterloo, Dept Stat & Actuarial Sci, Waterloo, ON, Canada
[2] Nankai Univ, LPMC, Tianjin, Peoples R China
[3] Nankai Univ, Inst Stat, Tianjin, Peoples R China
[4] Univ Wisconsin, Dept Stat, Madison, WI 53706 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Generalized method of moments; Identifiability; Instrument; Misspecified models; Nonignorable nonmonotone nonresponse; Robustness; MISSING DATA; MODELS; IMPUTATION;
D O I
10.4310/SII.2018.v11.n2.a5
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We consider identification and estimation in a longitudinal study with nonignorable nonmonotone nonresponse in responses. To handle the identifiability issue, we use a baseline covariates named as nonresponse instrument that can be excluded from the nonresponse propensity conditional on other observed covariates and the variables subject to nonresponse. The generalized method of moments is applied to estimate the parameters in the nonresponse propensity. Marginal response means and the parameters defined via regression models between responses and baseline covariates can be estimated by inverse probability weighting using the estimated propensity. Alternatively, we derive an augmented inverse probability weighting estimator and apply the importance sampling technique for its computation. Consistency and asymptotic normality of the proposed estimators are established under possibly misspecified models. Simulations are performed to evaluate the finite sample performance of the estimators. Also, a real data example is presented to demonstrate the proposed methodology.
引用
收藏
页码:265 / 279
页数:15
相关论文
共 50 条
  • [1] Inference for longitudinal data with nonignorable nonmonotone missing responses
    Sinha, Sanjoy K.
    Kaushal, Amit
    Xiao, Wenzhong
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 72 : 77 - 91
  • [2] Estimation of regression models for the mean of repeated outcomes under nonignorable nonmonotone nonresponse
    Vansteelandt, Stijn
    Rotnitzky, Andrea
    Robins, James
    [J]. BIOMETRIKA, 2007, 94 (04) : 841 - 860
  • [3] Regression Estimation for Longitudinal Data with Nonignorable Intermittent Nonresponse and Dropout
    Weiping Zhang
    Dazhi Zhao
    Yu Chen
    [J]. Communications in Mathematics and Statistics, 2022, 10 : 383 - 411
  • [4] Analysis of multivariate missing data with nonignorable nonresponse
    Tang, G
    Little, RJA
    Raghunathan, TE
    [J]. BIOMETRIKA, 2003, 90 (04) : 747 - 764
  • [5] Regression Estimation for Longitudinal Data with Nonignorable Intermittent Nonresponse and Dropout
    Zhang, Weiping
    Zhao, Dazhi
    Chen, Yu
    [J]. COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2022, 10 (03) : 383 - 411
  • [6] A Bivariate Pseudolikelihood for Incomplete Longitudinal Binary Data with Nonignorable Nonmonotone Missingness
    Sinha, Sanjoy K.
    Troxel, Andrea B.
    Lipsitz, Stuart R.
    Sinha, Debajyoti
    Fitzmaurice, Garrett M.
    Molenberghs, Geert
    Ibrahim, Joseph G.
    [J]. BIOMETRICS, 2011, 67 (03) : 1119 - 1126
  • [7] Estimation with survey data under nonignorable nonresponse or informative sampling
    Qin, J
    Leung, D
    Shao, J
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2002, 97 (457) : 193 - 200
  • [8] Nonignorable item nonresponse in panel data
    Li, Sijing
    Shao, Jun
    [J]. STATISTICAL THEORY AND RELATED FIELDS, 2022, 6 (01) : 58 - 71
  • [9] An approach to categorical data with nonignorable nonresponse
    Park, TS
    [J]. BIOMETRICS, 1998, 54 (04) : 1579 - 1590
  • [10] SEMIPARAMETRIC PSEUDO LIKELIHOODS FOR LONGITUDINAL DATA WITH OUTCOME-DEPENDENT NONMONOTONE NONRESPONSE
    Jiang, Deyuan
    Shao, Jun
    [J]. STATISTICA SINICA, 2012, 22 (03) : 1103 - 1121