Nonignorable Models for Intermittently Missing Categorical Longitudinal Responses

被引:11
|
作者
Tsonaka, Roula [1 ]
Rizopoulos, Dimitris [2 ]
Verbeke, Geert [1 ]
Lesaffre, Emmanuel [1 ,2 ]
机构
[1] Katholieke Univ Leuven, Interuniv Inst Biostat & Stat Bioinformat, B-3000 Louvain, Belgium
[2] Erasmus MC, Dept Biostat, NL-3000 CA Rotterdam, Netherlands
关键词
Categorical responses; Constrained vertex-exchange method; Marginalized models; Non-parametric maximum likelihood; Selection model; Shared parameter model; MAXIMUM-LIKELIHOOD-ESTIMATION; GENERALIZED LINEAR-MODELS; BINARY DATA; ORDINAL DATA; DATA SUBJECT; MIXTURE; MISSPECIFICATION; COMPONENTS; ALGORITHM;
D O I
10.1111/j.1541-0420.2009.01365.x
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
A class of nonignorable models is presented for handling nonmonotone missingness in categorical longitudinal responses. This class of models includes the traditional selection models and shared parameter models. This allows us to perform a broader than usual sensitivity analysis. In particular, instead of considering variations to a chosen nonignorable model, we study sensitivity between different missing data frameworks. An appealing feature of the developed class is that parameters with a marginal interpretation are obtained, while algebraically simple models are considered. Specifically, marginalized mixed-effects models (Heagerty, 1999, Biometrics 55, 688-698) are used for the longitudinal process that model separately the marginal mean and the correlation structure. For the correlation structure, random effects are introduced and their distribution is modeled either parametrically or non-parametrically to avoid potential misspecifications.
引用
收藏
页码:834 / 844
页数:11
相关论文
共 50 条
  • [1] Inference for longitudinal data with nonignorable nonmonotone missing responses
    Sinha, Sanjoy K.
    Kaushal, Amit
    Xiao, Wenzhong
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 72 : 77 - 91
  • [2] Robust analysis of longitudinal data with nonignorable missing responses
    Sanjoy K. Sinha
    [J]. Metrika, 2012, 75 : 913 - 938
  • [3] Robust analysis of longitudinal data with nonignorable missing responses
    Sinha, Sanjoy K.
    [J]. METRIKA, 2012, 75 (07) : 913 - 938
  • [4] Likelihood-based inference with nonignorable missing responses and covariates in models for discrete longitudinal data
    Stubbendick, Amy L.
    Ibrahim, Joseph G.
    [J]. STATISTICA SINICA, 2006, 16 (04) : 1143 - 1167
  • [5] FUNCTIONAL LINEAR REGRESSION MODELS FOR NONIGNORABLE MISSING SCALAR RESPONSES
    Li, Tengfei
    Xie, Fengchang
    Feng, Xiangnan
    Ibrahim, Joseph G.
    Zhu, Hongtu
    [J]. STATISTICA SINICA, 2018, 28 (04) : 1867 - 1886
  • [6] Bayesian Adaptive Lasso for Regression Models with Nonignorable Missing Responses
    Zhao, Yuanying
    Duan, Xingde
    [J]. JOURNAL OF MATHEMATICS, 2022, 2022
  • [7] Empirical likelihood for nonlinear regression models with nonignorable missing responses
    Yang, Zhihuang
    Tang, Niansheng
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2020, 48 (03): : 386 - 416
  • [8] Fitting time series models for longitudinal surveys with nonignorable missing data
    Liu, Zhan
    Yau, Chun Yip
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2021, 214 : 1 - 12
  • [9] Analysis of nonlinear structural equation models with nonignorable missing covariates and ordered categorical data
    Lee, Sik-Yum
    Tang, Nian-Sheng
    [J]. STATISTICA SINICA, 2006, 16 (04) : 1117 - 1141
  • [10] Missing responses in generalised linear mixed models when the missing data mechanism is nonignorable
    Ibrahim, JG
    Chen, MH
    Lipsitz, SR
    [J]. BIOMETRIKA, 2001, 88 (02) : 551 - 564