Persistence of random walk records

被引:7
|
作者
Ben-Naim, E. [1 ,2 ]
Krapivsky, P. L. [3 ]
机构
[1] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[2] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
[3] Boston Univ, Dept Phys, Boston, MA 02215 USA
关键词
random walk; record; first passage; persistence; nonequilibrium dynamics; data analysis; 1ST-PASSAGE PROPERTIES; STATISTICS; MAXIMUM;
D O I
10.1088/1751-8113/47/25/255002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study records generated by Brownian particles in one dimension. Specifically, we investigate an ordinary random walk and define the record as the maximal position of the walk. We compare the record of an individual random walk with the mean record, obtained as an average over infinitely many realizations. We term the walk 'superior' if the record is always above average, and conversely, the walk is said to be 'inferior' if the record is always below average. We find that the fraction of superior walks, S, decays algebraically with time, S similar to t(-beta), in the limit t -> 8, and that the persistence exponent is nontrivial, beta = 0.382 258.... The fraction of inferior walks, I, also decays as a power law, I similar to t(-alpha), but the persistence exponent is smaller, alpha = 0.241 608.... Both exponents are roots of transcendental equations involving the parabolic cylinder function. To obtain these theoretical results, we analyze the joint density of superior walks with a given record and position, while for inferior walks it suffices to study the density as a function of position.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Random walk on sparse random digraphs
    Bordenave, Charles
    Caputo, Pietro
    Salez, Justin
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2018, 170 (3-4) : 933 - 960
  • [42] Random Walk on Random Infinite Looptrees
    Bjornberg, Jakob E.
    Stefansson, Sigurdur Orn
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2015, 158 (06) : 1234 - 1261
  • [43] Random walk on a population of random walkers
    Agliari, E.
    Burioni, R.
    Cassi, D.
    Neri, F. M.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (01)
  • [44] Random walk versus random line
    De Coninck, Joel
    Dunlop, Francois
    Huillet, Thierry
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2009, 388 (19) : 4034 - 4040
  • [45] A note on random walk in random scenery
    Asselah, Amine
    Castell, Fabienne
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2007, 43 (02): : 163 - 173
  • [46] Random Walk on Random Infinite Looptrees
    Jakob E. Björnberg
    Sigurdur Örn Stefánsson
    [J]. Journal of Statistical Physics, 2015, 158 : 1234 - 1261
  • [47] Dynamic random walk in a random scenery
    Guillotin, N
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 324 (02): : 231 - 234
  • [48] Random walk on the random connection model
    Soenmez, Ercan
    Rousselle, Arnaud
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2022, 33 (05): : 1049 - 1060
  • [49] Counterbalancing steps at random in a random walk
    Bertoin, Jean
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2024, 26 (07) : 2655 - 2677
  • [50] RANDOM-WALK
    不详
    [J]. NATURE-PHYSICAL SCIENCE, 1972, 238 (84): : 82 - &