Persistence of random walk records

被引:7
|
作者
Ben-Naim, E. [1 ,2 ]
Krapivsky, P. L. [3 ]
机构
[1] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[2] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
[3] Boston Univ, Dept Phys, Boston, MA 02215 USA
关键词
random walk; record; first passage; persistence; nonequilibrium dynamics; data analysis; 1ST-PASSAGE PROPERTIES; STATISTICS; MAXIMUM;
D O I
10.1088/1751-8113/47/25/255002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study records generated by Brownian particles in one dimension. Specifically, we investigate an ordinary random walk and define the record as the maximal position of the walk. We compare the record of an individual random walk with the mean record, obtained as an average over infinitely many realizations. We term the walk 'superior' if the record is always above average, and conversely, the walk is said to be 'inferior' if the record is always below average. We find that the fraction of superior walks, S, decays algebraically with time, S similar to t(-beta), in the limit t -> 8, and that the persistence exponent is nontrivial, beta = 0.382 258.... The fraction of inferior walks, I, also decays as a power law, I similar to t(-alpha), but the persistence exponent is smaller, alpha = 0.241 608.... Both exponents are roots of transcendental equations involving the parabolic cylinder function. To obtain these theoretical results, we analyze the joint density of superior walks with a given record and position, while for inferior walks it suffices to study the density as a function of position.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Random walk on barely supercritical branching random walk
    van der Hofstad, Remco
    Hulshof, Tim
    Nagel, Jan
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2020, 177 (1-2) : 1 - 53
  • [22] Random walk on barely supercritical branching random walk
    Remco van der Hofstad
    Tim Hulshof
    Jan Nagel
    [J]. Probability Theory and Related Fields, 2020, 177 : 1 - 53
  • [23] RANDOM WALK
    Butler, Mary Odell
    [J]. ANNALS OF ANTHROPOLOGICAL PRACTICE, 2006, 26 (01) : 20 - 31
  • [24] RANDOM WALK
    VESTAL, CK
    [J]. BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 1962, 43 (08) : 433 - &
  • [25] Random walk in random groups
    M. Gromov
    [J]. Geometric and Functional Analysis, 2003, 13 : 73 - 146
  • [26] Biased Random Walk on the Trace of Biased Random Walk on the Trace of ...
    Croydon, David
    Holmes, Mark
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 375 (02) : 1341 - 1372
  • [27] Random walk on random walks
    Hilario, M. R.
    den Hollander, F.
    dos Santos, R. S.
    Sidoravicius, V.
    Teixeira, A.
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2015, 20 : 1 - 35
  • [28] Quantum random walk polynomial and quantum random walk measure
    Kang, Yuanbao
    Wang, Caishi
    [J]. QUANTUM INFORMATION PROCESSING, 2014, 13 (05) : 1191 - 1209
  • [29] Quantum random walk polynomial and quantum random walk measure
    Yuanbao Kang
    Caishi Wang
    [J]. Quantum Information Processing, 2014, 13 : 1191 - 1209
  • [30] Random walk in random groups
    Gromov, M
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2003, 13 (01) : 73 - 146