Persistence of random walk records

被引:7
|
作者
Ben-Naim, E. [1 ,2 ]
Krapivsky, P. L. [3 ]
机构
[1] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[2] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
[3] Boston Univ, Dept Phys, Boston, MA 02215 USA
关键词
random walk; record; first passage; persistence; nonequilibrium dynamics; data analysis; 1ST-PASSAGE PROPERTIES; STATISTICS; MAXIMUM;
D O I
10.1088/1751-8113/47/25/255002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study records generated by Brownian particles in one dimension. Specifically, we investigate an ordinary random walk and define the record as the maximal position of the walk. We compare the record of an individual random walk with the mean record, obtained as an average over infinitely many realizations. We term the walk 'superior' if the record is always above average, and conversely, the walk is said to be 'inferior' if the record is always below average. We find that the fraction of superior walks, S, decays algebraically with time, S similar to t(-beta), in the limit t -> 8, and that the persistence exponent is nontrivial, beta = 0.382 258.... The fraction of inferior walks, I, also decays as a power law, I similar to t(-alpha), but the persistence exponent is smaller, alpha = 0.241 608.... Both exponents are roots of transcendental equations involving the parabolic cylinder function. To obtain these theoretical results, we analyze the joint density of superior walks with a given record and position, while for inferior walks it suffices to study the density as a function of position.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] RANDOM-WALK WITH PERSISTENCE
    CLAES, I
    VANDENBROECK, C
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1987, 49 (1-2) : 383 - 392
  • [2] Persistence in random walk in composite media
    D. Chakraborty
    [J]. The European Physical Journal B, 2008, 64 : 263 - 269
  • [3] Persistence in random walk in composite media
    Chakraborty, D.
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2008, 64 (02): : 263 - 269
  • [4] Analytical results for random walk persistence
    Sire, C
    Majumdar, SN
    Rüdinger, A
    [J]. PHYSICAL REVIEW E, 2000, 61 (02): : 1258 - 1269
  • [5] Quantum persistence: A random-walk scenario
    Goswami, Sanchari
    Sen, Parongama
    Das, Arnab
    [J]. PHYSICAL REVIEW E, 2010, 81 (02):
  • [6] Record statistics and persistence for a random walk with a drift
    Majumdar, Satya N.
    Schehr, Gregory
    Wergen, Gregor
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (35)
  • [7] PERSISTENCE PROBABILITIES FOR A BRIDGE OF AN INTEGRATED SIMPLE RANDOM WALK
    Aurzada, Frank
    Dereich, Steffen
    Lifshits, Mikhail
    [J]. PROBABILITY AND MATHEMATICAL STATISTICS-POLAND, 2014, 34 (01): : 1 - 22
  • [8] Explicit Laws for the Records of the Perturbed Random Walk on Z
    Serlet, Laurent
    [J]. SEMINAIRE DE PROBABILITES XLIX, 2018, 2215 : 495 - 519
  • [9] Memory-based persistence in a counting random walk process
    Vallois, Pierre
    Tapiero, Charles S.
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 386 (01) : 303 - 317
  • [10] Universal survival probability for a correlated random walk and applications to records
    Lacroix-A-Chez-Toine, Bertrand
    Mori, Francesco
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (49)