Scalable frames and convex geometry

被引:14
|
作者
Kutyniok, Gitta [1 ]
Okoudjou, Kasso A. [2 ]
Philipp, Friedrich [1 ]
机构
[1] Tech Univ Berlin, Inst Math, D-10623 Berlin, Germany
[2] Univ Maryland, Dept Math, College Pk, MD 20742 USA
关键词
Scalable frames; tight frames; preconditioning; Farkas's lemma;
D O I
10.1090/conm/626/12507
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The recently introduced and characterized scalable frames can be considered as those frames which allow for perfect preconditioning in the sense that the frame vectors can be rescaled to yield a tight frame. In this paper we define m-scalability, a refinement of scalability based on the number of non-zero weights used in the rescaling process, and study the connection between this notion and elements from convex geometry. Finally, we provide results on the topology of scalable frames. In particular, we prove that the set of scalable frames with "small" redundancy is nowhere dense in the set of frames.
引用
收藏
页码:19 / 32
页数:14
相关论文
共 50 条
  • [31] Sumset Estimates in Convex Geometry
    Fradelizi, Matthieu
    Madiman, Mokshay
    Zvavitch, Artem
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2024, 2024 (15) : 11426 - 11454
  • [32] Multiobjective problems of convex geometry
    S. S. Kutateladze
    Siberian Mathematical Journal, 2009, 50 : 887 - 897
  • [33] "IRRATIONAL" CONSTRUCTIONS IN CONVEX GEOMETRY
    Milman, V.
    Rotem, L.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2018, 29 (01) : 165 - 175
  • [34] The Tensorization Trick in Convex Geometry
    Barvinok, Alexander
    NEW TRENDS IN INTUITIVE GEOMETRY, 2018, 27 : 1 - 23
  • [35] On graphical models and convex geometry
    Bar, Haim
    Wells, Martin T.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2023, 187
  • [36] The Cube: A Window to Convex Geometry
    Fodor, Ferenc
    ACTA SCIENTIARUM MATHEMATICARUM, 2010, 76 (1-2): : 352 - 352
  • [37] CONVEX GEOMETRY AND WAIST INEQUALITIES
    Klartag, Bo'az
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2017, 27 (01) : 130 - 164
  • [38] CONVEX GEOMETRY AND GROUP CHOICE
    OVCHINNIKOV, SV
    MATHEMATICAL SOCIAL SCIENCES, 1983, 5 (01) : 1 - 16
  • [39] Scalable frames in tensor product of Hilbert spaces
    Zakeri, Samineh
    Ahmadi, Ahmad
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2020, 11 (02): : 149 - 159
  • [40] SOME RESULTS ON SCALABLE K-FRAMES
    Ramesan, Sithara
    Ravindran, K. T.
    MATEMATICKI VESNIK, 2023, 75 (04): : 225 - 234