Multiobjective problems of convex geometry

被引:0
|
作者
S. S. Kutateladze
机构
[1] Sobolev Institute of Mathematics,
来源
关键词
isoperimetric problem; vector optimization; Pareto optimum; mixed volume; Alexandrov measure; linear majorization; Urysohn problem; Leidenfrost effect;
D O I
暂无
中图分类号
学科分类号
摘要
Under study is the new class of geometrical extremal problems in which it is required to achieve the best result in the presence of conflicting goals; e.g., given the surface area of a convex body \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{x} $$\end{document}, we try to maximize the volume of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{x} $$\end{document} and minimize the width of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{x} $$\end{document} simultaneously. These problems are addressed along the lines of multiple criteria decision making. We describe the Pareto-optimal solutions of isoperimetric-type vector optimization problems on using the techniques of the space of convex sets, linear majorization, and mixed volumes.
引用
收藏
页码:887 / 897
页数:10
相关论文
共 50 条
  • [1] MULTIOBJECTIVE PROBLEMS OF CONVEX GEOMETRY
    Kutateladze, S. S.
    SIBERIAN MATHEMATICAL JOURNAL, 2009, 50 (05) : 887 - 897
  • [2] Multiobjective duality for convex-linear problems
    Wanka, G
    Bot, RI
    OPERATIONS RESEARCH PROCEEDINGS 1999, 2000, : 36 - 40
  • [3] Multiobjective duality for convex semidefinite programming problems
    Wanka, G
    Bot, RI
    Grad, SM
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2003, 22 (03): : 711 - 728
  • [4] Fuzzy convexity and multiobjective convex optimization problems
    Syau, Yu-Ru
    Lee, E. Stanley
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2006, 52 (3-4) : 351 - 362
  • [5] The Convex Geometry of Linear Inverse Problems
    Chandrasekaran, Venkat
    Recht, Benjamin
    Parrilo, Pablo A.
    Willsky, Alan S.
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2012, 12 (06) : 805 - 849
  • [6] The Convex Geometry of Linear Inverse Problems
    Venkat Chandrasekaran
    Benjamin Recht
    Pablo A. Parrilo
    Alan S. Willsky
    Foundations of Computational Mathematics, 2012, 12 : 805 - 849
  • [7] A graphical characterization of the efficient set for convex multiobjective problems
    Ruiz, Francisco
    Rey, Lourdes
    Munoz, Maria Del Mar
    ANNALS OF OPERATIONS RESEARCH, 2008, 164 (01) : 115 - 126
  • [8] Multiobjective duality for convex-linear problems II
    Gert Wanka
    Radu-Ioan Boţ
    Mathematical Methods of Operations Research, 2001, 53 : 419 - 433
  • [9] Asymptotic analysis in convex composite multiobjective optimization problems
    Zhe Chen
    Journal of Global Optimization, 2013, 55 : 507 - 520
  • [10] A Complementarity Constraint Formulation of Convex Multiobjective Optimization Problems
    Leyffer, Sven
    INFORMS JOURNAL ON COMPUTING, 2009, 21 (02) : 257 - 267