Multiobjective problems of convex geometry

被引:0
|
作者
S. S. Kutateladze
机构
[1] Sobolev Institute of Mathematics,
来源
关键词
isoperimetric problem; vector optimization; Pareto optimum; mixed volume; Alexandrov measure; linear majorization; Urysohn problem; Leidenfrost effect;
D O I
暂无
中图分类号
学科分类号
摘要
Under study is the new class of geometrical extremal problems in which it is required to achieve the best result in the presence of conflicting goals; e.g., given the surface area of a convex body \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{x} $$\end{document}, we try to maximize the volume of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{x} $$\end{document} and minimize the width of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{x} $$\end{document} simultaneously. These problems are addressed along the lines of multiple criteria decision making. We describe the Pareto-optimal solutions of isoperimetric-type vector optimization problems on using the techniques of the space of convex sets, linear majorization, and mixed volumes.
引用
收藏
页码:887 / 897
页数:10
相关论文
共 50 条