Scalable frames and convex geometry

被引:14
|
作者
Kutyniok, Gitta [1 ]
Okoudjou, Kasso A. [2 ]
Philipp, Friedrich [1 ]
机构
[1] Tech Univ Berlin, Inst Math, D-10623 Berlin, Germany
[2] Univ Maryland, Dept Math, College Pk, MD 20742 USA
关键词
Scalable frames; tight frames; preconditioning; Farkas's lemma;
D O I
10.1090/conm/626/12507
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The recently introduced and characterized scalable frames can be considered as those frames which allow for perfect preconditioning in the sense that the frame vectors can be rescaled to yield a tight frame. In this paper we define m-scalability, a refinement of scalability based on the number of non-zero weights used in the rescaling process, and study the connection between this notion and elements from convex geometry. Finally, we provide results on the topology of scalable frames. In particular, we prove that the set of scalable frames with "small" redundancy is nowhere dense in the set of frames.
引用
收藏
页码:19 / 32
页数:14
相关论文
共 50 条
  • [1] Scalable frames
    Kutyniok, Gitta
    Okoudjou, Kasso A.
    Philipp, Friedrich
    Tuley, Elizabeth K.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (05) : 2225 - 2238
  • [2] Scalable Fusion Frames
    Rahimi, Asghar
    Moayyadzadeh, Samrand
    IRANIAN JOURNAL OF SCIENCE, 2025,
  • [3] Piecewise scalable frames
    Casazza, Peter G.
    De Carli, Laura
    Tran, Tin T.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2024, 694 : 262 - 282
  • [4] REMARKS ON SCALABLE FRAMES
    Casazza, Peter G.
    De Carli, Laura
    Ran, Tin T.
    OPERATORS AND MATRICES, 2023, 17 (02): : 327 - 342
  • [5] On minimal scalings of scalable frames
    Domagalski, Rachel
    Kim, Yeon Hyang
    Narayan, Sivaram K.
    2015 INTERNATIONAL CONFERENCE ON SAMPLING THEORY AND APPLICATIONS (SAMPTA), 2015, : 91 - 95
  • [6] Characterization of Dual Scalable Frames
    Behine Heydarpour
    Ali Akbar Arefijamaal
    Arash Ghaani Farashahi
    Complex Analysis and Operator Theory, 2024, 18
  • [7] Characterization of Dual Scalable Frames
    Heydarpour, Behine
    Arefijamaal, Ali Akbar
    Farashahi, Arash Ghaani
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2024, 18 (03)
  • [8] Geometry of epimorphisms and frames
    Corach, G
    Pacheco, M
    Stojanoff, D
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (07) : 2039 - 2049
  • [9] Geometry of Convex Geometries
    Chalopin, Jeremie
    Chepoi, Victor
    Knauer, Kolja
    DISCRETE & COMPUTATIONAL GEOMETRY, 2025,
  • [10] SCALABLE ALGORITHMS FOR CONVEX CLUSTERING
    Zhou, Weilian
    Yi, Haidong
    Mishne, Gal
    Chi, Eric
    2021 IEEE DATA SCIENCE AND LEARNING WORKSHOP (DSLW), 2021,