Scalable frames

被引:52
|
作者
Kutyniok, Gitta [1 ]
Okoudjou, Kasso A. [2 ]
Philipp, Friedrich [1 ]
Tuley, Elizabeth K. [3 ]
机构
[1] Tech Univ Berlin, Inst Math, D-10623 Berlin, Germany
[2] Univ Maryland, Dept Math, College Pk, MD 20742 USA
[3] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
关键词
Conical surfaces; Diagonal operator; Preconditioner; Tight frames;
D O I
10.1016/j.laa.2012.10.046
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Tight frames can be characterized as those frames which possess optimal numerical stability properties. In this paper, we consider the question of modifying a general frame to generate a tight frame by rescaling its frame vectors; a process which can also be regarded as perfect preconditioning of a frame by a diagonal operator. A frame is called scalable, if such a diagonal operator exists. We derive various characterizations of scalable frames, thereby including the infinite-dimensional situation. Finally, we provide a geometric interpretation of scalability in terms of conical surfaces. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:2225 / 2238
页数:14
相关论文
共 50 条
  • [1] Scalable Fusion Frames
    Rahimi, Asghar
    Moayyadzadeh, Samrand
    IRANIAN JOURNAL OF SCIENCE, 2025,
  • [2] Piecewise scalable frames
    Casazza, Peter G.
    De Carli, Laura
    Tran, Tin T.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2024, 694 : 262 - 282
  • [3] REMARKS ON SCALABLE FRAMES
    Casazza, Peter G.
    De Carli, Laura
    Ran, Tin T.
    OPERATORS AND MATRICES, 2023, 17 (02): : 327 - 342
  • [4] On minimal scalings of scalable frames
    Domagalski, Rachel
    Kim, Yeon Hyang
    Narayan, Sivaram K.
    2015 INTERNATIONAL CONFERENCE ON SAMPLING THEORY AND APPLICATIONS (SAMPTA), 2015, : 91 - 95
  • [5] Characterization of Dual Scalable Frames
    Behine Heydarpour
    Ali Akbar Arefijamaal
    Arash Ghaani Farashahi
    Complex Analysis and Operator Theory, 2024, 18
  • [6] Characterization of Dual Scalable Frames
    Heydarpour, Behine
    Arefijamaal, Ali Akbar
    Farashahi, Arash Ghaani
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2024, 18 (03)
  • [7] Scalable frames and convex geometry
    Kutyniok, Gitta
    Okoudjou, Kasso A.
    Philipp, Friedrich
    OPERATOR METHODS IN WAVELETS, TILINGS, AND FRAMES, 2014, 626 : 19 - 32
  • [8] Piecewise scalable frames in Hilbert spaces
    Khosravi, Amir
    Farmani, Mohammad Reza
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2024, 22 (03)
  • [9] Scalable frames in tensor product of Hilbert spaces
    Zakeri, Samineh
    Ahmadi, Ahmad
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2020, 11 (02): : 149 - 159
  • [10] SOME RESULTS ON SCALABLE K-FRAMES
    Ramesan, Sithara
    Ravindran, K. T.
    MATEMATICKI VESNIK, 2023, 75 (04): : 225 - 234