Scalable frames

被引:52
|
作者
Kutyniok, Gitta [1 ]
Okoudjou, Kasso A. [2 ]
Philipp, Friedrich [1 ]
Tuley, Elizabeth K. [3 ]
机构
[1] Tech Univ Berlin, Inst Math, D-10623 Berlin, Germany
[2] Univ Maryland, Dept Math, College Pk, MD 20742 USA
[3] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
关键词
Conical surfaces; Diagonal operator; Preconditioner; Tight frames;
D O I
10.1016/j.laa.2012.10.046
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Tight frames can be characterized as those frames which possess optimal numerical stability properties. In this paper, we consider the question of modifying a general frame to generate a tight frame by rescaling its frame vectors; a process which can also be regarded as perfect preconditioning of a frame by a diagonal operator. A frame is called scalable, if such a diagonal operator exists. We derive various characterizations of scalable frames, thereby including the infinite-dimensional situation. Finally, we provide a geometric interpretation of scalability in terms of conical surfaces. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:2225 / 2238
页数:14
相关论文
共 50 条
  • [31] Expansion of frames to tight frames
    Li, Deng Feng
    Sun, Wen Chang
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2009, 25 (02) : 287 - 292
  • [32] Finite frames, P-frames and basically disconnected frames
    Sudip Kumar Acharyya
    Goutam Bhunia
    Partha Pratim Ghosh
    Algebra universalis, 2014, 72 : 209 - 224
  • [33] The Feichtinger conjecture for wavelet frames, gabor frames and frames of translates
    Bownik, Marcin
    Speegle, Darrin
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2006, 58 (06): : 1121 - 1143
  • [34] Frames and weak frames for unbounded operators
    Bellomonte, Giorgia
    Corso, Rosario
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2020, 46 (02)
  • [35] ON THE STABILITY OF FUSION FRAMES (FRAMES OF SUBSPACES)
    Mohammad Sadegh Asgari
    Acta Mathematica Scientia, 2011, 31 (04) : 1633 - 1642
  • [36] Fusion frames and g-frames
    Khosravi, Amir
    Musandeh, Kamran
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 342 (02) : 1068 - 1083
  • [37] Frames and weak frames for unbounded operators
    Giorgia Bellomonte
    Rosario Corso
    Advances in Computational Mathematics, 2020, 46
  • [38] G-frames as special frames
    Askarizadeh, Abas
    Dehghan, Mohammad Ali
    TURKISH JOURNAL OF MATHEMATICS, 2013, 37 (01) : 60 - 70
  • [39] Frames and fusion frames in quantum optics
    Janniolkowski, Andrzej
    SYMMETRY AND STRUCTURAL PROPERTIES OF CONDENSED MATTER, 2010, 213
  • [40] Linear Frames as Orbits of Projective Frames
    Kuleshov A.V.
    Journal of Mathematical Sciences, 2023, 276 (4) : 525 - 532