ON THE STABILITY OF FUSION FRAMES (FRAMES OF SUBSPACES)

被引:0
|
作者
Mohammad Sadegh Asgari [1 ]
机构
[1] Department of Mathematics, Faculty of Science, Islamic Azad University, Central Tehran Branch, Central Tehran Branch
关键词
fusion frames (frames of subspaces); exact fusion frame; dual fusion frames;
D O I
暂无
中图分类号
O177.1 [希尔伯特空间及其线性算子理论];
学科分类号
070104 ;
摘要
A frame is an orthonormal basis-like collection of vectors in a Hilbert space, but need not be a basis or orthonormal. A fusion frame (frame of subspaces) is a frame-like collection of subspaces in a Hilbert space, thereby constructing a frame for the whole space by joining sequences of frames for subspaces. Moreover the notion of fusion frames provide a framework for applications and providing efficient and robust information processing algorithms.In this paper we study the conditions under which removing an element from a fusion frame, again we obtain another fusion frame. We give another proof of [5, Corollary 3.3(iii)] with extra information about the bounds.
引用
收藏
页码:1633 / 1642
页数:10
相关论文
共 50 条
  • [1] ON THE STABILITY OF FUSION FRAMES (FRAMES OF SUBSPACES)
    Asgari, Mohammad Sadegh
    ACTA MATHEMATICA SCIENTIA, 2011, 31 (04) : 1633 - 1642
  • [2] New characterizations of fusion frames (frames of subspaces)
    Asgari, Mohammad Sadegh
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2009, 119 (03): : 369 - 382
  • [3] New characterizations of fusion frames (frames of subspaces)
    Mohammad Sadegh Asgari
    Proceedings - Mathematical Sciences, 2009, 119 : 369 - 382
  • [4] QUOTIENT FRAMES AND SUBSPACES
    DOWKER, CH
    PAPERT, D
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1966, 16 : 275 - &
  • [5] On the duality of frames and fusion frames
    Arefijamaal, Ali Akbar
    Neyshaburi, Fahimeh Arabyani
    Shamsabadi, Mitra
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2018, 47 (01): : 47 - 56
  • [6] Characteristic subspaces and hyperinvariant frames
    Astuti, Pudji
    Wimmer, Harald K.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 482 : 21 - 46
  • [7] FRAMES OF SUBSPACES FOR BANACH SPACES
    Jain, P. K.
    Kaushik, S. K.
    Kumar, Varinder
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2010, 8 (02) : 243 - 252
  • [8] Relay fusion frames and bridging results for fusion frames
    Hong, Guoqing
    Li, Pengtong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 489 (01)
  • [9] Fusion frames and g-frames
    Khosravi, Amir
    Musandeh, Kamran
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 342 (02) : 1068 - 1083
  • [10] Frames and fusion frames in quantum optics
    Janniolkowski, Andrzej
    SYMMETRY AND STRUCTURAL PROPERTIES OF CONDENSED MATTER, 2010, 213