Lagrangian and Hamiltonian structures for the constant astigmatism equation

被引:10
|
作者
Pavlov, Maxim V. [1 ]
Zykov, Sergej A. [2 ]
机构
[1] Russian Acad Sci, PN Lebedev Phys Inst, Sect Math Phys, Moscow, Russia
[2] Silesian Univ Opava, Math Inst Opava, Opava 74601, Czech Republic
关键词
OPERATORS;
D O I
10.1088/1751-8113/46/39/395203
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we found a Lagrangian representation and corresponding Hamiltonian structure for the constant astigmatism equation. Utilizing this Hamiltonian structure and extra conservation law densities we construct a first evolution commuting flow of the third order. We also apply the recursion operator and present a second Hamiltonian structure. This bi-Hamiltonian structure allows us to replicate infinitely many local commuting flows and corresponding local conservation law densities.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Lagrangian theory of Hamiltonian reduction
    Gonera, C
    Kosinski, P
    ACTA PHYSICA POLONICA B, 2003, 34 (08): : 3977 - 3986
  • [32] Hamiltonian and Lagrangian theory of viscoelasticity
    A. Hanyga
    M. Seredyńska
    Continuum Mechanics and Thermodynamics, 2008, 19
  • [33] LAGRANGIAN AND HAMILTONIAN METHODS IN MAGNETOHYDRODYNAMICS
    NEWCOMB, WA
    NUCLEAR FUSION, 1962, : 451 - 463
  • [34] LAGRANGIAN SUBMANIFOLDS AND HAMILTONIAN SYSTEMS
    WEINSTEIN, A
    ANNALS OF MATHEMATICS, 1973, 98 (03) : 377 - 410
  • [35] Hamiltonian versus Lagrangian forms
    Trimarco, C
    TRENDS IN APPLICATIONS OF MATHEMATICS TO MECHANICS, 2000, 106 : 103 - 111
  • [36] Commutativity in Lagrangian and Hamiltonian mechanics
    Sridhar, Ananth
    Suris, Yuri B.
    JOURNAL OF GEOMETRY AND PHYSICS, 2019, 137 : 154 - 161
  • [37] LAGRANGIAN SUBMANIFOLDS AND HAMILTONIAN DYNAMICS
    TULCZYJEW, WM
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1976, 283 (01): : 15 - 18
  • [38] Hamiltonian and Lagrangian theory of viscoelasticity
    Hanyga, A.
    Seredynska, M.
    CONTINUUM MECHANICS AND THERMODYNAMICS, 2008, 19 (08) : 475 - 492
  • [39] LAGRANGIAN AND HAMILTONIAN BRST FORMALISMS
    BATLLE, C
    GOMIS, J
    PARIS, J
    ROCA, J
    PHYSICS LETTERS B, 1989, 224 (03) : 288 - 290
  • [40] HAMILTONIAN AND LAGRANGIAN BOND GRAPHS
    BROWN, FT
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1991, 328 (5-6): : 809 - 831