Hamiltonian and Lagrangian theory of viscoelasticity

被引:0
|
作者
A. Hanyga
M. Seredyńska
机构
[1] University of Bergen,Department of Earth Sciences
[2] Polish Academy of Sciences,Institute of Fundamental Technological Research
来源
关键词
Viscoelasticity; Poroelasticity; Relaxation; Energy conservation; Hamiltonian; Lagrangian; Poisson bracket; 46.35.+z; 45.20.dh; 45.20.Jj; 45.10.Hj;
D O I
暂无
中图分类号
学科分类号
摘要
The viscoelastic relaxation modulus is a positive-definite function of time. This property alone allows the definition of a conserved energy which is a positive-definite quadratic functional of the stress and strain fields. Using the conserved energy concept a Hamiltonian and a Lagrangian functional are constructed for dynamic viscoelasticity. The Hamiltonian represents an elastic medium interacting with a continuum of oscillators. By allowing for multiphase displacement and introducing memory effects in the kinetic terms of the equations of motion a Hamiltonian is constructed for the visco-poroelasticity.
引用
收藏
相关论文
共 50 条
  • [1] Hamiltonian and Lagrangian theory of viscoelasticity
    Hanyga, A.
    Seredynska, M.
    [J]. CONTINUUM MECHANICS AND THERMODYNAMICS, 2008, 19 (08) : 475 - 492
  • [2] Hamiltonian Theory of Viscoelasticity
    Hanyga, A.
    Seredynska, M.
    [J]. IUTAM SYMPOSIUM ON THEORETICAL, COMPUTATIONAL AND MODELLING ASPECTS OF INELASTIC MEDIA, 2008, 11 : 373 - +
  • [3] Lagrangian theory of Hamiltonian reduction
    Gonera, C
    Kosinski, P
    [J]. ACTA PHYSICA POLONICA B, 2003, 34 (08): : 3977 - 3986
  • [4] BRST theory without hamiltonian and lagrangian
    Lyakhovich, SL
    Sharapov, AA
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2005, (03): : 229 - 250
  • [5] Comparison of Spectral Invariants in Lagrangian and Hamiltonian Floer Theory
    Djuretic, Jovana
    Katic, Jelena
    Milinkovic, Darko
    [J]. FILOMAT, 2016, 30 (05) : 1161 - 1174
  • [6] Lagrangian-Hamiltonian unified formalism for field theory
    Echeverría-Enríquez, A
    López, C
    Marín-Solano, J
    Muñoz-Lecanda, MC
    Román-Roy, N
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2004, 45 (01) : 360 - 380
  • [7] LAGRANGIAN FORMULATION OF HAMILTONIAN THEORY OF GENERAL KIND WITH BONDS
    GITMAN, DM
    LYAKHOVICH, SL
    NOSKOV, MD
    TYUTIN, IV
    [J]. IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1986, 29 (03): : 104 - 112
  • [8] LAGRANGIAN AND HAMILTONIAN FORMALISM IN FIELD THEORY: A SIMPLE MODEL
    Grabowska, Katarzyna
    [J]. JOURNAL OF GEOMETRIC MECHANICS, 2010, 2 (04): : 375 - 395
  • [10] GENERALIZED HAMILTONIAN FORMULATION OF A STRICTLY LOCALIZABLE LAGRANGIAN FIELD THEORY
    Kasymzhanov, M. A.
    Khodzhaev, L. Sh
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 1973, 16 (02) : 783 - 790