Hamiltonian and Lagrangian theory of viscoelasticity

被引:0
|
作者
A. Hanyga
M. Seredyńska
机构
[1] University of Bergen,Department of Earth Sciences
[2] Polish Academy of Sciences,Institute of Fundamental Technological Research
来源
关键词
Viscoelasticity; Poroelasticity; Relaxation; Energy conservation; Hamiltonian; Lagrangian; Poisson bracket; 46.35.+z; 45.20.dh; 45.20.Jj; 45.10.Hj;
D O I
暂无
中图分类号
学科分类号
摘要
The viscoelastic relaxation modulus is a positive-definite function of time. This property alone allows the definition of a conserved energy which is a positive-definite quadratic functional of the stress and strain fields. Using the conserved energy concept a Hamiltonian and a Lagrangian functional are constructed for dynamic viscoelasticity. The Hamiltonian represents an elastic medium interacting with a continuum of oscillators. By allowing for multiphase displacement and introducing memory effects in the kinetic terms of the equations of motion a Hamiltonian is constructed for the visco-poroelasticity.
引用
收藏
相关论文
共 50 条
  • [41] Discrete Embeddings for Lagrangian and Hamiltonian Systems
    Cresson, Jacky
    Greff, Isabelle
    Pierre, Charles
    [J]. ACTA MATHEMATICA VIETNAMICA, 2018, 43 (03) : 391 - 413
  • [42] A HAMILTONIAN APPROACH TO LAGRANGIAN NOETHER TRANSFORMATIONS
    GRACIA, X
    PONS, JM
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (23): : 6357 - 6369
  • [43] LAGRANGIAN AND HAMILTONIAN MECHANICS WITH FRACTIONAL DERIVATIVES
    Popescu, Emil
    [J]. ROMANIAN ASTRONOMICAL JOURNAL, 2013, 23 (02): : 85 - 97
  • [44] LAGRANGIAN + HAMILTONIAN FORMALISMS WITH SUPPLEMENTARY CONDITIONS
    SCHWARTZ, M
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1964, 5 (07) : 903 - &
  • [45] AFFINE DUALITY AND LAGRANGIAN AND HAMILTONIAN SYSTEMS
    Krupkova, Olga
    Saunders, David J.
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2011, 8 (03) : 669 - 697
  • [46] Dirac algebroids in Lagrangian and Hamiltonian mechanics
    Grabowska, Katarzyna
    Grabowski, Janusz
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (11) : 2233 - 2253
  • [47] Hamiltonian approach to lagrangian gauge symmetries
    Banerjee, R
    Rothe, HJ
    Rothe, KD
    [J]. PHYSICS LETTERS B, 1999, 463 (2-4) : 248 - 251
  • [48] Hamiltonian and Lagrangian dynamics in a noncommutative space
    Malik, RP
    [J]. MODERN PHYSICS LETTERS A, 2003, 18 (39) : 2795 - 2806
  • [49] MACROSCOPIC LAGRANGIAN AND HAMILTONIAN DENSITIES FOR PLASMAS
    PENG, YKM
    [J]. BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1972, 17 (11): : 979 - 980
  • [50] Lagrangian and Hamiltonian constraint structure coefficients
    Shirzad, A
    Sadeghnezhad, N
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (36): : 7403 - 7413