BNSP: an R Package for Fitting Bayesian Semiparametric Regression Models and Variable Selection

被引:0
|
作者
Papageorgiou, Georgios [1 ]
机构
[1] Birkbeck Univ London, Dept Econ Math & Stat, London, England
来源
R JOURNAL | 2018年 / 10卷 / 02期
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The R package BNSP provides a unified framework for semiparametric location-scale regression and stochastic search variable selection. The statistical methodology that the package is built upon utilizes basis function expansions to represent semiparametric covariate effects in the mean and variance functions, and spike-slab priors to perform selection and regularization of the estimated effects. In addition to the main function that performs posterior sampling, the package includes functions for assessing convergence of the sampler, summarizing model fits, visualizing covariate effects and obtaining predictions for new responses or their means given feature/covariate vectors.
引用
收藏
页码:526 / 548
页数:23
相关论文
共 50 条
  • [21] Algorithm 1017: fuzzyreg: An R Package for Fitting Fuzzy Regression Models
    Skrabanek, Pavel
    Martinkova, Natalia
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2021, 47 (03):
  • [22] Semiparametric Bayesian analysis of selection models
    Lee, JY
    Berger, JO
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (456) : 1397 - 1409
  • [23] Bayesian analysis of semiparametric Bernstein polynomial regression models for data with sample selection
    Kim, Hea-Jung
    Roh, Taeyoung
    Choi, Taeryon
    [J]. STATISTICS, 2019, 53 (05) : 1082 - 1111
  • [24] On selection of semiparametric spatial regression models
    Wang, Guannan
    Wang, Jue
    [J]. STAT, 2019, 8 (01):
  • [25] Variable Selection for Semiparametric Partially Linear Covariate-Adjusted Regression Models
    Du, Jiang
    Li, Gaorong
    Peng, Heng
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2015, 44 (13) : 2809 - 2826
  • [26] Variable selection in semiparametric regression models for longitudinal data with informative observation times
    Jazi, Omidali Aghababaei
    Pullenayegum, Eleanor
    [J]. STATISTICS IN MEDICINE, 2022, 41 (17) : 3281 - 3298
  • [27] Adaptive Monte Carlo for Bayesian Variable Selection in Regression Models
    Lamnisos, Demetris
    Griffin, Jim E.
    Steel, Mark F. J.
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2013, 22 (03) : 729 - 748
  • [28] A novel Bayesian approach for variable selection in linear regression models
    Posch, Konstantin
    Arbeiter, Maximilian
    Pilz, Juergen
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2020, 144
  • [29] R2GUESS: A Graphics Processing Unit-Based R Package for Bayesian Variable Selection Regression of Multivariate Responses
    Liquet, Benoit
    Bottolo, Leonardo
    Campanella, Gianluca
    Richardson, Sylvia
    Chadeau-Hyam, Marc
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2016, 69 (02):
  • [30] Bayesian variable selection and estimation in semiparametric joint models of multivariate longitudinal and survival data
    Tang, An-Min
    Zhao, Xingqiu
    Tang, Nian-Sheng
    [J]. BIOMETRICAL JOURNAL, 2017, 59 (01) : 57 - 78